LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
- URL: http://arxiv.org/abs/2402.13430v1
- Date: Tue, 20 Feb 2024 23:49:25 GMT
- Title: LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
- Authors: Ping Liu, Haichao Wei, Xiaochen Hou, Jianqiang Shen, Shihai He, Kay
Qianqi Shen, Zhujun Chen, Fedor Borisyuk, Daniel Hewlett, Liang Wu, Srikant
Veeraraghavan, Alex Tsun, Chengming Jiang, Wenjing Zhang
- Abstract summary: We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems.
Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges.
A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model.
- Score: 12.088731514483104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present LinkSAGE, an innovative framework that integrates Graph Neural
Networks (GNNs) into large-scale personalized job matching systems, designed to
address the complex dynamics of LinkedIns extensive professional network. Our
approach capitalizes on a novel job marketplace graph, the largest and most
intricate of its kind in industry, with billions of nodes and edges. This graph
is not merely extensive but also richly detailed, encompassing member and job
nodes along with key attributes, thus creating an expansive and interwoven
network. A key innovation in LinkSAGE is its training and serving methodology,
which effectively combines inductive graph learning on a heterogeneous,
evolving graph with an encoder-decoder GNN model. This methodology decouples
the training of the GNN model from that of existing Deep Neural Nets (DNN)
models, eliminating the need for frequent GNN retraining while maintaining
up-to-date graph signals in near realtime, allowing for the effective
integration of GNN insights through transfer learning. The subsequent nearline
inference system serves the GNN encoder within a real-world setting,
significantly reducing online latency and obviating the need for costly
real-time GNN infrastructure. Validated across multiple online A/B tests in
diverse product scenarios, LinkSAGE demonstrates marked improvements in member
engagement, relevance matching, and member retention, confirming its
generalizability and practical impact.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - ABC: Aggregation before Communication, a Communication Reduction
Framework for Distributed Graph Neural Network Training and Effective
Partition [0.0]
Graph Neural Networks (GNNs) are neural models tailored for graph-structure data and have shown superior performance in learning representations for graph-structured data.
In this paper, we study the communication complexity during distributed GNNs training.
We show that the new partition paradigm is particularly ideal in the case of dynamic graphs where it is infeasible to control the edge placement due to the unknown of the graph-changing process.
arXiv Detail & Related papers (2022-12-11T04:54:01Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Scaling Graph-based Deep Learning models to larger networks [2.946140899052065]
Graph Neural Networks (GNN) have shown a strong potential to be integrated into commercial products for network control and management.
This paper presents a GNN-based solution that can effectively scale to larger networks including higher link capacities and aggregated traffic on links.
arXiv Detail & Related papers (2021-10-04T09:04:19Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
We present IGNNITION, a novel open-source framework that enables fast prototyping of Graph Neural Networks (GNNs) for networking systems.
IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs.
Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations.
arXiv Detail & Related papers (2021-09-14T14:28:21Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data.
We present the GPT-GNN framework to initialize GNNs by generative pre-training.
We show that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.
arXiv Detail & Related papers (2020-06-27T20:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.