ReInc: Scaling Training of Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2501.15348v1
- Date: Sat, 25 Jan 2025 23:16:03 GMT
- Title: ReInc: Scaling Training of Dynamic Graph Neural Networks
- Authors: Mingyu Guan, Saumia Singhal, Taesoo Kim, Anand Padmanabha Iyer,
- Abstract summary: ReInc is a system designed to enable efficient and scalable training of Dynamic Graph Neural Networks (DGNNs) on large-scale graphs.
We introduce key innovations that capitalize on the unique combination of Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) inherent in DGNNs.
- Score: 6.1592549031654364
- License:
- Abstract: Dynamic Graph Neural Networks (DGNNs) have gained widespread attention due to their applicability in diverse domains such as traffic network prediction, epidemiological forecasting, and social network analysis. In this paper, we present ReInc, a system designed to enable efficient and scalable training of DGNNs on large-scale graphs. ReInc introduces key innovations that capitalize on the unique combination of Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) inherent in DGNNs. By reusing intermediate results and incrementally computing aggregations across consecutive graph snapshots, ReInc significantly enhances computational efficiency. To support these optimizations, ReInc incorporates a novel two-level caching mechanism with a specialized caching policy aligned to the DGNN execution workflow. Additionally, ReInc addresses the challenges of managing structural and temporal dependencies in dynamic graphs through a new distributed training strategy. This approach eliminates communication overheads associated with accessing remote features and redistributing intermediate results. Experimental results demonstrate that ReInc achieves up to an order of magnitude speedup compared to state-of-the-art frameworks, tested across various dynamic GNN architectures and real-world graph datasets.
Related papers
- DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
The representation learning of Discrete-Time Dynamic Graphs (DTDGs) has been extensively applied to model the dynamics of temporally changing entities and their evolving connections.
This paper introduces a novel representation learning method DTFormer for DTDGs, pivoting from the traditional GNN+RNN framework to a Transformer-based architecture.
arXiv Detail & Related papers (2024-07-26T05:46:23Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)
We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.
We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - LinkSAGE: Optimizing Job Matching Using Graph Neural Networks [12.088731514483104]
We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems.
Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges.
A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model.
arXiv Detail & Related papers (2024-02-20T23:49:25Z) - ABC: Aggregation before Communication, a Communication Reduction
Framework for Distributed Graph Neural Network Training and Effective
Partition [0.0]
Graph Neural Networks (GNNs) are neural models tailored for graph-structure data and have shown superior performance in learning representations for graph-structured data.
In this paper, we study the communication complexity during distributed GNNs training.
We show that the new partition paradigm is particularly ideal in the case of dynamic graphs where it is infeasible to control the edge placement due to the unknown of the graph-changing process.
arXiv Detail & Related papers (2022-12-11T04:54:01Z) - A Comprehensive Survey on Distributed Training of Graph Neural Networks [59.785830738482474]
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields.
To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training.
The volume of related research on distributed GNN training is exceptionally vast, accompanied by an extraordinarily rapid pace of publication.
arXiv Detail & Related papers (2022-11-10T06:22:12Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
We propose an SNN-based deep generative method, namely the Spiking Variational Graph Auto-Encoders (S-VGAE) for efficient graph representation learning.
We conduct link prediction experiments on multiple benchmark graph datasets, and the results demonstrate that our model consumes significantly lower energy with the performances superior or comparable to other ANN- and SNN-based methods for graph representation learning.
arXiv Detail & Related papers (2022-10-24T12:54:41Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.