STENCIL: Submodular Mutual Information Based Weak Supervision for Cold-Start Active Learning
- URL: http://arxiv.org/abs/2402.13468v2
- Date: Fri, 12 Jul 2024 04:44:39 GMT
- Title: STENCIL: Submodular Mutual Information Based Weak Supervision for Cold-Start Active Learning
- Authors: Nathan Beck, Adithya Iyer, Rishabh Iyer,
- Abstract summary: We present STENCIL, which improves overall accuracy by $10%-18%$ and rare-class F-1 score by $17%-40%$ on multiple text classification datasets over common active learning methods within the class-imbalanced cold-start setting.
We show that STENCIL improves overall accuracy by $10%-18%$ and rare-class F-1 score by $17%-40%$ on multiple text classification datasets over common active learning methods within the class-imbalanced cold-start setting.
- Score: 1.9116784879310025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As supervised fine-tuning of pre-trained models within NLP applications increases in popularity, larger corpora of annotated data are required, especially with increasing parameter counts in large language models. Active learning, which attempts to mine and annotate unlabeled instances to improve model performance maximally fast, is a common choice for reducing the annotation cost; however, most methods typically ignore class imbalance and either assume access to initial annotated data or require multiple rounds of active learning selection before improving rare classes. We present STENCIL, which utilizes a set of text exemplars and the recently proposed submodular mutual information to select a set of weakly labeled rare-class instances that are then strongly labeled by an annotator. We show that STENCIL improves overall accuracy by $10\%-18\%$ and rare-class F-1 score by $17\%-40\%$ on multiple text classification datasets over common active learning methods within the class-imbalanced cold-start setting.
Related papers
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - Towards Efficient Active Learning in NLP via Pretrained Representations [1.90365714903665]
Fine-tuning Large Language Models (LLMs) is now a common approach for text classification in a wide range of applications.
We drastically expedite this process by using pretrained representations of LLMs within the active learning loop.
Our strategy yields similar performance to fine-tuning all the way through the active learning loop but is orders of magnitude less computationally expensive.
arXiv Detail & Related papers (2024-02-23T21:28:59Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
We challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly.
We propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios.
arXiv Detail & Related papers (2023-03-28T13:47:16Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time.
We propose an evolving multi-label fuzzy classifier (EFC-ML) which is able to self-adapt and self-evolve its structure with new incoming multi-label samples in an incremental, single-pass manner.
arXiv Detail & Related papers (2022-03-29T08:01:03Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
In deep learning, active learning is usually implemented as an iterative process in which successive deep models are updated via fine tuning.
We tackle this issue by using an approach inspired by transfer learning.
We introduce a novel acquisition function which exploits the iterative nature of AL process to select samples in a more robust fashion.
arXiv Detail & Related papers (2022-01-18T18:53:10Z) - Active Learning for Open-set Annotation [38.739845944840454]
We propose a new active learning framework called LfOSA, which boosts the classification performance with an effective sampling strategy to precisely detect examples from known classes for annotation.
The experimental results show that the proposed method can significantly improve the selection quality of known classes, and achieve higher classification accuracy with lower annotation cost than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-01-18T06:11:51Z) - ZeroBERTo -- Leveraging Zero-Shot Text Classification by Topic Modeling [57.80052276304937]
This paper proposes a new model, ZeroBERTo, which leverages an unsupervised clustering step to obtain a compressed data representation before the classification task.
We show that ZeroBERTo has better performance for long inputs and shorter execution time, outperforming XLM-R by about 12% in the F1 score in the FolhaUOL dataset.
arXiv Detail & Related papers (2022-01-04T20:08:17Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.