Hybrid Reasoning Based on Large Language Models for Autonomous Car Driving
- URL: http://arxiv.org/abs/2402.13602v4
- Date: Mon, 19 Aug 2024 13:27:55 GMT
- Title: Hybrid Reasoning Based on Large Language Models for Autonomous Car Driving
- Authors: Mehdi Azarafza, Mojtaba Nayyeri, Charles Steinmetz, Steffen Staab, Achim Rettberg,
- Abstract summary: Large Language Models (LLMs) have garnered significant attention for their ability to understand text and images, generate human-like text, and perform complex reasoning tasks.
We investigate how well LLMs can adapt and apply a combination of arithmetic and common-sense reasoning, particularly in autonomous driving scenarios.
- Score: 14.64475022650084
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have garnered significant attention for their ability to understand text and images, generate human-like text, and perform complex reasoning tasks. However, their ability to generalize this advanced reasoning with a combination of natural language text for decision-making in dynamic situations requires further exploration. In this study, we investigate how well LLMs can adapt and apply a combination of arithmetic and common-sense reasoning, particularly in autonomous driving scenarios. We hypothesize that LLMs hybrid reasoning abilities can improve autonomous driving by enabling them to analyze detected object and sensor data, understand driving regulations and physical laws, and offer additional context. This addresses complex scenarios, like decisions in low visibility (due to weather conditions), where traditional methods might fall short. We evaluated Large Language Models (LLMs) based on accuracy by comparing their answers with human-generated ground truth inside CARLA. The results showed that when a combination of images (detected objects) and sensor data is fed into the LLM, it can offer precise information for brake and throttle control in autonomous vehicles across various weather conditions. This formulation and answers can assist in decision-making for auto-pilot systems.
Related papers
- Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
Large Language Models (LLMs) have the potential to enhance various aspects of autonomous driving systems.
This paper introduces novel concepts and approaches to designing LLMs for autonomous driving (LLM4AD)
arXiv Detail & Related papers (2024-10-20T04:36:19Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA (Comprehensive Vision-Language-Action) dataset comprises real-world driving videos spanning more than 80 hours.
This dataset establishes a framework for robust, interpretable, and data-driven autonomous driving systems.
arXiv Detail & Related papers (2024-08-19T09:53:49Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - Evaluation of Large Language Models for Decision Making in Autonomous
Driving [4.271294502084542]
One strategy of using Large Language Models (LLMs) for autonomous driving involves inputting surrounding objects as text prompts to the LLMs.
When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential.
This study quantitatively evaluated these two abilities of LLMs in the context of autonomous driving.
arXiv Detail & Related papers (2023-12-11T12:56:40Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Drive is a benchmark dataset with over 600K video-text pairs.
We characterize the autonomous driving process as a sequential combination of perception, prediction, and reasoning steps.
We introduce a novel aggregated evaluation metric to assess chain-based reasoning performance in autonomous systems.
arXiv Detail & Related papers (2023-12-06T18:32:33Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model [84.29836263441136]
This study introduces DriveGPT4, a novel interpretable end-to-end autonomous driving system based on multimodal large language models (MLLMs)
DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users.
Evaluations conducted on the BDD-X dataset showcase the superior qualitative and quantitative performance of DriveGPT4.
arXiv Detail & Related papers (2023-10-02T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.