Feature Engineering Approach to Building Load Prediction: A Case Study for Commercial Building Chiller Plant Optimization in Tropical Weather
- URL: http://arxiv.org/abs/2502.15780v1
- Date: Mon, 17 Feb 2025 10:22:43 GMT
- Title: Feature Engineering Approach to Building Load Prediction: A Case Study for Commercial Building Chiller Plant Optimization in Tropical Weather
- Authors: Zhan Wang, Chen Weidong, Huang Zhifeng, Md Raisul Islam, Chua Kian Jon,
- Abstract summary: This study presents a cooling load prediction model that combines a neural network with Kalman filtering and K-means clustering.<n> Applied to real world data from a commercial skyscraper in Singapore's central business district, the model achieved a 46.5% improvement in prediction accuracy.
- Score: 1.9182246029051933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In tropical countries with high humidity, air conditioning can account for up to 60% of a building's energy use. For commercial buildings with centralized systems, the efficiency of the chiller plant is vital, and model predictive control provides an effective strategy for optimizing operations through dynamic adjustments based on accurate load predictions. Artificial neural networks are effective for modelling nonlinear systems but are prone to overfitting due to their complexity. Effective feature engineering can mitigate this issue. While weather data are crucial for load prediction, they are often used as raw numerical inputs without advanced processing. Clustering features is a technique that can reduce model complexity and enhance prediction accuracy. Although previous studies have explored clustering algorithms for load prediction, none have applied them to multidimensional weather data, revealing a research gap. This study presents a cooling load prediction model that combines a neural network with Kalman filtering and K-means clustering. Applied to real world data from a commercial skyscraper in Singapore's central business district, the model achieved a 46.5% improvement in prediction accuracy. An optimal chiller sequencing strategy was also developed through genetic algorithm optimization of the predictive load, potentially saving 13.8% in energy. Finally, the study evaluated the integration of thermal energy storage into the chiller plant design, demonstrating potential reductions in capital and operational costs of 26% and 13%, respectively.
Related papers
- QGAPHEnsemble : Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting [0.0]
This research highlights the practical efficacy of employing advanced machine learning techniques.<n>Our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions.<n>The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.
arXiv Detail & Related papers (2025-01-18T20:18:48Z) - Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
We propose a weather prediction model based on a multi-scale convolutional CNN-LSTM-Attention architecture.<n>The model integrates Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention mechanisms.<n> Experimental results show that the model performs excellently in predicting temperature trends with high accuracy.
arXiv Detail & Related papers (2024-12-11T00:42:31Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - EWMoE: An effective model for global weather forecasting with mixture-of-experts [6.695845790670147]
We propose EWMoE, an effective model for accurate global weather forecasting, which requires significantly less training data and computational resources.
Our model incorporates three key components to enhance prediction accuracy: 3D absolute position embedding, a core Mixture-of-Experts layer, and two specific loss functions.
arXiv Detail & Related papers (2024-05-09T16:42:13Z) - Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.