Decision-Focused Learning for Complex System Identification: HVAC Management System Application
- URL: http://arxiv.org/abs/2501.14708v1
- Date: Fri, 24 Jan 2025 18:32:31 GMT
- Title: Decision-Focused Learning for Complex System Identification: HVAC Management System Application
- Authors: Pietro Favaro, Jean-François Toubeau, François Vallée, Yury Dvorkin,
- Abstract summary: Decision-Focused Learning (DFL) trains machine learning models for optimal performance in downstream decision-making tools.
We demonstrate the usefulness of the method on a building Heating, Ventilation, and Air Conditioning day-ahead management system for a realistic 15-zone building located in Denver, US.
- Score: 0.0
- License:
- Abstract: As opposed to conventional training methods tailored to minimize a given statistical metric or task-agnostic loss (e.g., mean squared error), Decision-Focused Learning (DFL) trains machine learning models for optimal performance in downstream decision-making tools. We argue that DFL can be leveraged to learn the parameters of system dynamics, expressed as constraint of the convex optimization control policy, while the system control signal is being optimized, thus creating an end-to-end learning framework. This is particularly relevant for systems in which behavior changes once the control policy is applied, hence rendering historical data less applicable. The proposed approach can perform system identification - i.e., determine appropriate parameters for the system analytical model - and control simultaneously to ensure that the model's accuracy is focused on areas most relevant to control. Furthermore, because black-box systems are non-differentiable, we design a loss function that requires solely to measure the system response. We propose pre-training on historical data and constraint relaxation to stabilize the DFL and deal with potential infeasibilities in learning. We demonstrate the usefulness of the method on a building Heating, Ventilation, and Air Conditioning day-ahead management system for a realistic 15-zone building located in Denver, US. The results show that the conventional RC building model, with the parameters obtained from historical data using supervised learning, underestimates HVAC electrical power consumption. For our case study, the ex-post cost is on average six times higher than the expected one. Meanwhile, the same RC model with parameters obtained via DFL underestimates the ex-post cost only by 3%.
Related papers
- Rethinking Resource Management in Edge Learning: A Joint Pre-training and Fine-tuning Design Paradigm [87.47506806135746]
In some applications, edge learning is experiencing a shift in focusing from conventional learning from scratch to new two-stage learning.
This paper considers the problem of joint communication and computation resource management in a two-stage edge learning system.
It is shown that the proposed joint resource management over the pre-training and fine-tuning stages well balances the system performance trade-off.
arXiv Detail & Related papers (2024-04-01T00:21:11Z) - Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - Optimal Exploration for Model-Based RL in Nonlinear Systems [14.540210895533937]
Learning to control unknown nonlinear dynamical systems is a fundamental problem in reinforcement learning and control theory.
We develop an algorithm able to efficiently explore the system to reduce uncertainty in a task-dependent metric.
Our algorithm relies on a general reduction from policy optimization to optimal experiment design in arbitrary systems, and may be of independent interest.
arXiv Detail & Related papers (2023-06-15T15:47:50Z) - A Framework for History-Aware Hyperparameter Optimisation in
Reinforcement Learning [8.659973888018781]
A Reinforcement Learning (RL) system depends on a set of initial conditions that affect the system's performance.
We propose a framework based on integrating complex event processing and temporal models, to alleviate these trade-offs.
We tested the proposed approach in a 5G mobile communications case study that uses DQN, a variant of RL, for its decision-making.
arXiv Detail & Related papers (2023-03-09T11:30:40Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem.
We demonstrate improved performance over a robust controller baseline in a numerical example.
arXiv Detail & Related papers (2022-07-28T17:36:37Z) - Regret Analysis of Learning-Based MPC with Partially-Unknown Cost
Function [5.601217969637838]
exploration/exploitation trade-off is an inherent challenge in data-driven and adaptive control.
We propose the use of a finitehorizon oracle controller with perfect knowledge of all system parameters as a reference for optimal control actions.
We develop learning-based policies that we prove achieve low regret with respect to this oracle finite-horizon controller.
arXiv Detail & Related papers (2021-08-04T22:43:51Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
We present a differentiable predictive control (DPC) methodology for learning constrained control laws for unknown nonlinear systems.
DPC poses an approximate solution to multiparametric programming problems emerging from explicit nonlinear model predictive control (MPC)
arXiv Detail & Related papers (2021-07-25T16:47:57Z) - Anticipating the Long-Term Effect of Online Learning in Control [75.6527644813815]
AntLer is a design algorithm for learning-based control laws that anticipates learning.
We show that AntLer approximates an optimal solution arbitrarily accurately with probability one.
arXiv Detail & Related papers (2020-07-24T07:00:14Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.