On the Conflict of Robustness and Learning in Collaborative Machine Learning
- URL: http://arxiv.org/abs/2402.13700v2
- Date: Fri, 26 Jul 2024 20:29:44 GMT
- Title: On the Conflict of Robustness and Learning in Collaborative Machine Learning
- Authors: Mathilde Raynal, Carmela Troncoso,
- Abstract summary: Collaborative Machine Learning (CML) allows participants to jointly train a machine learning model while keeping their training data private.
In many scenarios where CML is seen as the solution to privacy issues, such as health-related applications, safety is also a primary concern.
To ensure that CML processes produce models that output correct and reliable decisions, researchers propose to use textitrobust aggregators.
- Score: 9.372984119950765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative Machine Learning (CML) allows participants to jointly train a machine learning model while keeping their training data private. In many scenarios where CML is seen as the solution to privacy issues, such as health-related applications, safety is also a primary concern. To ensure that CML processes produce models that output correct and reliable decisions \emph{even in the presence of potentially untrusted participants}, researchers propose to use \textit{robust aggregators} to filter out malicious contributions that negatively influence the training process. In this work, we formalize the two prevalent forms of robust aggregators in the literature. We then show that neither can provide the intended protection: either they use distance-based metrics that cannot reliably identify malicious inputs to training; or use metrics based on the behavior of the loss function which create a conflict with the ability of CML participants to learn, i.e., they cannot eliminate the risk of compromise without preventing learning.
Related papers
- A Method to Facilitate Membership Inference Attacks in Deep Learning Models [5.724311218570013]
We demonstrate a new form of membership inference attack that is strictly more powerful than prior art.
Our attack empowers the adversary to reliably de-identify all the training samples.
We show that the models can effectively disguise the amplified membership leakage under common membership privacy auditing.
arXiv Detail & Related papers (2024-07-02T03:33:42Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
Machine Unlearning (MU) has recently gained considerable attention due to its potential to achieve Safe AI.
This survey aims to fill the gap between the extensive number of studies on threats, attacks, and defenses in machine unlearning.
arXiv Detail & Related papers (2024-03-20T15:40:18Z) - Membership Information Leakage in Federated Contrastive Learning [7.822625013699216]
Federated Contrastive Learning (FCL) represents a burgeoning approach for learning from decentralized unlabeled data.
FCL is susceptible to privacy risks, such as membership information leakage, stemming from its distributed nature.
This study delves into the feasibility of executing a membership inference attack on FCL and proposes a robust attack methodology.
arXiv Detail & Related papers (2024-03-06T19:53:25Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - A Robust Adversary Detection-Deactivation Method for Metaverse-oriented
Collaborative Deep Learning [13.131323206843733]
This paper proposes an adversary detection-deactivation method, which can limit and isolate the access of potential malicious participants.
A detailed protection analysis has been conducted on a Multiview CDL case, and results show that the protocol can effectively prevent harmful access by manner analysis.
arXiv Detail & Related papers (2023-10-21T06:45:18Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Adversarial Machine Learning: Bayesian Perspectives [0.4915744683251149]
Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting machine learning (ML) systems against security threats.
In certain scenarios there may be adversaries that actively manipulate input data to fool learning systems.
This creates a new class of security vulnerabilities that ML systems may face, and a new desirable property called adversarial robustness essential to trust operations.
arXiv Detail & Related papers (2020-03-07T10:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.