論文の概要: Reinforcement learning-assisted quantum architecture search for
variational quantum algorithms
- arxiv url: http://arxiv.org/abs/2402.13754v3
- Date: Thu, 7 Mar 2024 11:51:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 16:59:43.392055
- Title: Reinforcement learning-assisted quantum architecture search for
variational quantum algorithms
- Title(参考訳): 強化学習支援量子アーキテクチャによる変分量子アルゴリズムの探索
- Authors: Akash Kundu
- Abstract要約: この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant hurdle in the noisy intermediate-scale quantum (NISQ) era is
identifying functional quantum circuits. These circuits must also adhere to the
constraints imposed by current quantum hardware limitations. Variational
quantum algorithms (VQAs), a class of quantum-classical optimization
algorithms, were developed to address these challenges in the currently
available quantum devices. However, the overall performance of VQAs depends on
the initialization strategy of the variational circuit, the structure of the
circuit (also known as ansatz), and the configuration of the cost function.
Focusing on the structure of the circuit, in this thesis, we improve the
performance of VQAs by automating the search for an optimal structure for the
variational circuits using reinforcement learning (RL). Within the thesis, the
optimality of a circuit is determined by evaluating its depth, the overall
count of gates and parameters, and its accuracy in solving the given problem.
The task of automating the search for optimal quantum circuits is known as
quantum architecture search (QAS). The majority of research in QAS is primarily
focused on a noiseless scenario. Yet, the impact of noise on the QAS remains
inadequately explored. In this thesis, we tackle the issue by introducing a
tensor-based quantum circuit encoding, restrictions on environment dynamics to
explore the search space of possible circuits efficiently, an episode halting
scheme to steer the agent to find shorter circuits, a double deep Q-network
(DDQN) with an $\epsilon$-greedy policy for better stability. The numerical
experiments on noiseless and noisy quantum hardware show that in dealing with
various VQAs, our RL-based QAS outperforms existing QAS. Meanwhile, the methods
we propose in the thesis can be readily adapted to address a wide range of
other VQAs.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)時代の重要なハードルは、機能量子回路を特定することである。
これらの回路は、現在の量子ハードウェアの制限によって課される制約にも従わなければならない。
量子古典最適化アルゴリズムのクラスである変分量子アルゴリズム(VQA)は、現在利用可能な量子デバイスにおけるこれらの課題に対処するために開発された。
しかしながら、VQAの全体的な性能は、変動回路の初期化戦略、回路の構造(アンザッツとも呼ばれる)、コスト関数の設定に依存する。
回路の構造に着目し,この論文では,強化学習(RL)を用いた変分回路の最適構造探索を自動化することにより,VQAの性能を向上させる。
論文の中で、回路の最適性は、その深さ、ゲートとパラメータの全体数、および与えられた問題を解決するための精度を評価することによって決定される。
最適量子回路の探索を自動化するタスクは量子アーキテクチャサーチ(QAS)として知られている。
QASの研究の大部分は、主にノイズのないシナリオに焦点を当てている。
しかし、QASに対するノイズの影響はいまだに不十分である。
本稿では,テンソルをベースとした量子回路の符号化,可能回路の探索空間を効率的に探索するための環境力学の制限,より短い回路を見つけるためにエージェントを操るエピソード停止スキーム,安定性向上のための$\epsilon$-greedyポリシを備えたDDQN(Double Deep Q-network)を導入することで課題に取り組む。
ノイズレスおよびノイズの多い量子ハードウェアに関する数値実験は、様々なVQAを扱う際に、我々のRLベースのQASが既存のQASより優れていることを示している。
一方、論文で提案する手法は、他の幅広いvqaに対応するために容易に適用できる。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
本研究は、VQAデプロイメントにおける課題に対処するために設計されたカリキュラムベースの強化学習QAS(CRLQAS)を導入する。
このアルゴリズムは、(i)環境力学の3Dアーキテクチャを符号化し、回路の探索空間を効率的に探索する。
研究を容易にするため,雑音量子回路の計算効率を大幅に向上させる最適化シミュレータを開発した。
論文 参考訳(メタデータ) (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
教師なし表現学習は量子アーキテクチャ探索(QAS)を前進させる新しい機会を提供する
QASは変分量子アルゴリズム(VQA)のための量子回路を最適化するように設計されている
論文 参考訳(メタデータ) (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
微分可能量子アーキテクチャ探索(DQAS)の一般的なフレームワークを提案する。
DQASは、エンドツーエンドの微分可能な方法で量子回路の自動設計を可能にする。
論文 参考訳(メタデータ) (2020-10-16T18:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。