論文の概要: Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach
- arxiv url: http://arxiv.org/abs/2404.11253v1
- Date: Wed, 17 Apr 2024 11:00:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:24:17.753744
- Title: Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach
- Title(参考訳): Bayesianパラメータ化量子回路最適化(BPQCO):タスクとハードウェアに依存したアプローチ
- Authors: Alexander Benítez-Buenache, Queralt Portell-Montserrat,
- Abstract要約: 変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
- 参考スコア(独自算出の注目度): 49.89480853499917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems using parameterized quantum circuits (PQCs). The design of these circuits influences the ability of the algorithm to efficiently explore the solution space and converge to more optimal solutions. Choosing an appropriate circuit topology, gate set, and parameterization scheme is determinant to achieve good performance. In addition, it is not only problem-dependent, but the quantum hardware used also has a significant impact on the results. Therefore, we present BPQCO, a Bayesian Optimization-based strategy to search for optimal PQCs adapted to the problem to be solved and to the characteristics and limitations of the chosen quantum hardware. To this end, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems (a synthetic dataset and the well-known Iris dataset), focusing on the design of the circuit ansatz. In addition, we study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers. To mitigate the effect of noise, two alternative optimization strategies based on the characteristics of the quantum system are proposed. The results obtained confirm the relevance of the presented approach and allow its adoption in further work based on the use of PQCs.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、パラメータ化量子回路(PQC)を用いて最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
これらの回路の設計は、解空間を効率的に探索し、より最適な解に収束するアルゴリズムの能力に影響を与える。
適切な回路トポロジ、ゲートセット、パラメータ化スキームを選択することは、優れた性能を達成するために決定的に重要である。
加えて、問題に依存しているだけでなく、使用した量子ハードウェアも結果に大きな影響を与えている。
そこで,ベイズ最適化に基づく最適PQC探索手法BPQCOを提案する。
この目的のために,回路設計が2つの分類問題(合成データセットとよく知られたアイリスデータセット)の性能に与える影響を実験的に実証し,回路アンサッツの設計に焦点を当てた。
さらに,実量子コンピュータのシミュレーションにおいて,ノイズの存在下で得られた回路の劣化について検討した。
ノイズの影響を軽減するために,量子システムの特性に基づく2つの最適化手法を提案する。
その結果, 提案手法の妥当性を確認し, PQCsを応用したさらなる開発が可能であることがわかった。
関連論文リスト
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
ポートフォリオ最適化(PO)は、投資ポートフォリオのリスクを最小限に抑えつつ、純利益を最大化することを目的とした金融問題である。
本稿では,量子パラメータの変動を調べるために,新しいスケーラブルなフレームワークPO-QAを提案する。
本結果は,量子機械学習のレンズからPOを理解する上で有効な知見を提供する。
論文 参考訳(メタデータ) (2024-07-29T10:26:28Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
論文 参考訳(メタデータ) (2024-02-21T12:30:39Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
本研究は、VQAデプロイメントにおける課題に対処するために設計されたカリキュラムベースの強化学習QAS(CRLQAS)を導入する。
このアルゴリズムは、(i)環境力学の3Dアーキテクチャを符号化し、回路の探索空間を効率的に探索する。
研究を容易にするため,雑音量子回路の計算効率を大幅に向上させる最適化シミュレータを開発した。
論文 参考訳(メタデータ) (2024-02-05T20:33:00Z) - Quantum Circuit Unoptimization [0.6449786007855248]
我々は、量子回路最適化と呼ばれる量子アルゴリズムプリミティブを構築する。
回路等価性を保ちながらいくつかの冗長性を導入することで、与えられた量子回路複合体を作る。
我々は、量子回路の最適化を用いて、コンパイラベンチマークを生成し、回路最適化性能を評価する。
論文 参考訳(メタデータ) (2023-11-07T08:38:18Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Gradient-free quantum optimization on NISQ devices [0.0]
重み依存学習の最近の進歩を考察し、適切な回路アーキテクチャとパラメータチューニングのトレードオフに対処する戦略を提案する。
遺伝的競合を介して回路を評価するNEATに基づくアルゴリズムの使用を検討し、パラメータ数を超えることにより問題を回避します。
論文 参考訳(メタデータ) (2020-12-23T10:24:54Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。