論文の概要: Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing
- arxiv url: http://arxiv.org/abs/2402.13791v2
- Date: Wed, 06 Nov 2024 10:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 03:29:49.452878
- Title: Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing
- Title(参考訳): Black-Boxのオープン: リモートセンシングにおける説明可能なAIの体系的レビュー
- Authors: Adrian Höhl, Ivica Obadic, Miguel Ángel Fernández Torres, Hiba Najjar, Dario Oliveira, Zeynep Akata, Andreas Dengel, Xiao Xiang Zhu,
- Abstract要約: ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
- 参考スコア(独自算出の注目度): 51.524108608250074
- License:
- Abstract: In recent years, black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing. Despite the potential benefits of uncovering the inner workings of these models with explainable AI, a comprehensive overview summarizing the explainable AI methods used and their objectives, findings, and challenges in remote sensing applications is still missing. In this paper, we address this gap by performing a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches and emerging directions that tackle specific remote sensing challenges. We also reveal the common patterns of explanation interpretation, discuss the extracted scientific insights, and reflect on the approaches used for the evaluation of explainable AI methods. As such, our review provides a complete summary of the state-of-the-art of explainable AI in remote sensing. Further, we give a detailed outlook on the challenges and promising research directions, representing a basis for novel methodological development and a useful starting point for new researchers in the field.
- Abstract(参考訳): 近年,遠隔センシングにおける知識抽出のモデルパラダイムとして,ブラックボックス機械学習が主流となっている。
これらのモデルの内部動作を説明可能なAIで明らかにする潜在的なメリットにもかかわらず、使用されるAIメソッドとその目的、発見、そしてリモートセンシングアプリケーションにおける課題を要約した包括的な概要は、いまだに欠落している。
本稿では、この分野における重要なトレンドを特定するための体系的なレビューを行い、新たな説明可能なAIアプローチと、特定のリモートセンシング課題に対処する新たな方向性に光を当てることにより、このギャップに対処する。
また、解釈の共通パターンを明らかにし、抽出された科学的知見を議論し、説明可能なAI手法の評価に使用するアプローチについて考察する。
このように、我々のレビューは、リモートセンシングにおける説明可能なAIの現状の完全な要約を提供する。
さらに,新しい方法論開発の基礎と新たな研究者にとって有用な出発点として,課題と今後の研究方向性について,より詳細な展望を述べる。
関連論文リスト
- Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
ブラックボックスAIモデルの急増は、内部メカニズムを説明し、信頼性を正当化する必要性を喚起している。
勾配に基づく説明は、ニューラルネットワークモデルに直接適用することができる。
アルゴリズムの性能を測定するために,人的評価と定量的評価の両方を導入する。
論文 参考訳(メタデータ) (2024-03-15T15:49:31Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - A Survey of Explainable AI in Deep Visual Modeling: Methods and Metrics [24.86176236641865]
我々は、ディープビジュアルモデルを解釈するための方法とメトリクスに焦点を当てたExplainable AIの最初の調査を示す。
最先端技術に沿った目覚ましい貢献をカバーし、既存の技術に関する分類学的組織を提供するだけでなく、さまざまな評価指標を発掘する。
論文 参考訳(メタデータ) (2023-01-31T06:49:42Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - A Critical Review of Inductive Logic Programming Techniques for
Explainable AI [9.028858411921906]
インダクティブ論理プログラミング(英: Inductive Logic Programming、ILP)は、人工知能のサブフィールドである。
ILPは、例と背景知識から説明可能な一階クラッサル理論を生成する。
既存のILPシステムは、しばしば広大な解空間を持ち、誘導された解はノイズや乱れに非常に敏感である。
論文 参考訳(メタデータ) (2021-12-31T06:34:32Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Explaining Deep Neural Networks and Beyond: A Review of Methods and
Applications [12.239046765871109]
非線形機械学習の問題解決能力と戦略をよりよく理解するための解釈可能性と説明法が注目されている。
我々は、この活発な新興分野のタイムリーな概要を「ポストホック」の説明に焦点をあて、その理論的基礎を説明する。
機械学習のこのエキサイティングな基礎分野の課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2020-03-17T10:45:51Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。