論文の概要: Beyond Hate Speech: NLP's Challenges and Opportunities in Uncovering
Dehumanizing Language
- arxiv url: http://arxiv.org/abs/2402.13818v1
- Date: Wed, 21 Feb 2024 13:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 15:06:24.463763
- Title: Beyond Hate Speech: NLP's Challenges and Opportunities in Uncovering
Dehumanizing Language
- Title(参考訳): ヘイトスピーチを超えて:NLPの非人間化言語発見への挑戦と機会
- Authors: Hezhao Zhang, Lasana Harris, Nafise Sadat Moosavi
- Abstract要約: 本稿では, GPT-4, GPT-3.5, LLAMA-2を含む最先端NLPモデルの性能評価を行った。
以上の結果から,これらのモデルが潜在的な可能性を示し,より広範なヘイトスピーチと非人間化言語を区別する精度が70%に達する一方で,バイアスも示していることがわかった。
- 参考スコア(独自算出の注目度): 11.946719280041789
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dehumanization, characterized as a subtle yet harmful manifestation of hate
speech, involves denying individuals of their human qualities and often results
in violence against marginalized groups. Despite significant progress in
Natural Language Processing across various domains, its application in
detecting dehumanizing language is limited, largely due to the scarcity of
publicly available annotated data for this domain. This paper evaluates the
performance of cutting-edge NLP models, including GPT-4, GPT-3.5, and LLAMA-2,
in identifying dehumanizing language. Our findings reveal that while these
models demonstrate potential, achieving a 70\% accuracy rate in distinguishing
dehumanizing language from broader hate speech, they also display biases. They
are over-sensitive in classifying other forms of hate speech as dehumanization
for a specific subset of target groups, while more frequently failing to
identify clear cases of dehumanization for other target groups. Moreover,
leveraging one of the best-performing models, we automatically annotated a
larger dataset for training more accessible models. However, our findings
indicate that these models currently do not meet the high-quality data
generation threshold necessary for this task.
- Abstract(参考訳): ヘイトスピーチの微妙で有害な表現として特徴づけられる非人間化は、人格の個人を否定し、しばしば辺境的な集団に対する暴力を引き起こす。
様々なドメインにわたる自然言語処理の大幅な進歩にもかかわらず、非人間化言語の検出への応用は限定的である。
本稿では, GPT-4, GPT-3.5, LLAMA-2を含む最先端NLPモデルの性能評価を行った。
以上の結果から,これらのモデルが潜在的な可能性を示し,より広義のヘイトスピーチと非人間化言語を区別する精度が70%に達する一方で,バイアスも現れることがわかった。
彼らは、他のヘイトスピーチを標的グループの特定のサブセットの非人間化として分類することに過敏であり、一方、他のターゲットグループの非人間化の明確なケースを特定できないことが多い。
さらに、最高のパフォーマンスモデルのひとつを活用して、よりアクセスしやすいモデルをトレーニングするための大きなデータセットを自動的に注釈付けしました。
しかし,本研究の結果から,この課題に必要な高品質なデータ生成しきい値を現在満たしていないことが判明した。
関連論文リスト
- A Target-Aware Analysis of Data Augmentation for Hate Speech Detection [3.858155067958448]
ヘイトスピーチは、ソーシャルネットワークの普及によって引き起こされる主要な脅威の1つだ。
本稿では,既存のデータを生成言語モデルで拡張し,ターゲットの不均衡を低減する可能性を検討する。
起源、宗教、障害などのヘイトカテゴリーでは、トレーニングのための強化データを用いたヘイトスピーチ分類は、拡張ベースラインが存在しない場合、10%以上のF1が向上する。
論文 参考訳(メタデータ) (2024-10-10T15:46:27Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - HCDIR: End-to-end Hate Context Detection, and Intensity Reduction model
for online comments [2.162419921663162]
ソーシャルメディア投稿において,Hate Context Detection と Hate Intensity Reduction のための新しいエンドツーエンドモデル HCDIR を提案する。
我々は、ヘイトフルコメントを検出するために、いくつかの事前訓練された言語モデルを微調整し、最も優れたヘイトフルコメント検出モデルを確認した。
論文 参考訳(メタデータ) (2023-12-20T17:05:46Z) - Developing Linguistic Patterns to Mitigate Inherent Human Bias in
Offensive Language Detection [1.6574413179773761]
本稿では,ラベル付けプロセスにおけるバイアスを低減するための言語データ拡張手法を提案する。
このアプローチは、複数の言語にわたる攻撃的な言語分類タスクを改善する可能性がある。
論文 参考訳(メタデータ) (2023-12-04T10:20:36Z) - Model-Agnostic Meta-Learning for Multilingual Hate Speech Detection [23.97444551607624]
ソーシャルメディアにおけるヘイトスピーチは増加傾向にあり、そのような有害なコンテンツを検出することが大きな牽引力となっている。
HateMAMLはモデルに依存しないメタ学習ベースのフレームワークで、低リソース言語でのヘイトスピーチ検出を効果的に行う。
大規模な実験は、8つの異なる低リソース言語にわたる5つのデータセットで実施されている。
論文 参考訳(メタデータ) (2023-03-04T22:28:29Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Cross-lingual hate speech detection based on multilingual
domain-specific word embeddings [4.769747792846004]
トランスファーラーニングの視点から多言語のヘイトスピーチ検出の課題に取り組むことを提案する。
私たちの目標は、ある特定の言語の知識が他の言語の分類に使用できるかどうかを判断することです。
単純かつ特定された多言語ヘイト表現を用いることで分類結果が向上することを示す。
論文 参考訳(メタデータ) (2021-04-30T02:24:50Z) - A Framework for the Computational Linguistic Analysis of Dehumanization [52.735780962665814]
我々は1986年から2015年にかけてニューヨーク・タイムズでLGBTQの人々に関する議論を分析した。
LGBTQの人々の人為的な記述は、時間とともにますます増えています。
大規模に非人間化言語を分析する能力は、メディアバイアスを自動的に検出し、理解するだけでなく、オンラインで乱用する言語にも影響を及ぼす。
論文 参考訳(メタデータ) (2020-03-06T03:02:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。