RealDex: Towards Human-like Grasping for Robotic Dexterous Hand
- URL: http://arxiv.org/abs/2402.13853v1
- Date: Wed, 21 Feb 2024 14:59:46 GMT
- Title: RealDex: Towards Human-like Grasping for Robotic Dexterous Hand
- Authors: Yumeng Liu, Yaxun Yang, Youzhuo Wang, Xiaofei Wu, Jiamin Wang, Yichen
Yao, S\"oren Schwertfeger, Sibei Yang, Wenping Wang, Jingyi Yu, Xuming He,
Yuexin Ma
- Abstract summary: We introduce RealDex, a pioneering dataset capturing authentic dexterous hand grasping motions infused with human behavioral patterns.
RealDex holds immense promise in advancing humanoid robot for automated perception, cognition, and manipulation in real-world scenarios.
- Score: 64.47045863999061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce RealDex, a pioneering dataset capturing authentic
dexterous hand grasping motions infused with human behavioral patterns,
enriched by multi-view and multimodal visual data. Utilizing a teleoperation
system, we seamlessly synchronize human-robot hand poses in real time. This
collection of human-like motions is crucial for training dexterous hands to
mimic human movements more naturally and precisely. RealDex holds immense
promise in advancing humanoid robot for automated perception, cognition, and
manipulation in real-world scenarios. Moreover, we introduce a cutting-edge
dexterous grasping motion generation framework, which aligns with human
experience and enhances real-world applicability through effectively utilizing
Multimodal Large Language Models. Extensive experiments have demonstrated the
superior performance of our method on RealDex and other open datasets. The
complete dataset and code will be made available upon the publication of this
work.
Related papers
- DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning [42.88605563822155]
We present a large-scale automated data generation system that synthesizes trajectories from human demonstrations for humanoid robots with dexterous hands.
We generate 21K demos across these tasks from just 60 source human demos.
We also present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task.
arXiv Detail & Related papers (2024-10-31T17:48:45Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
We present Human to Humanoid (H2O), a framework that enables real-time whole-body teleoperation of a humanoid robot with only an RGB camera.
We train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner.
To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.
arXiv Detail & Related papers (2024-03-07T12:10:41Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - SynH2R: Synthesizing Hand-Object Motions for Learning Human-to-Robot
Handovers [37.49601724575655]
Vision-based human-to-robot handover is an important and challenging task in human-robot interaction.
We introduce a framework that can generate plausible human grasping motions suitable for training the robot.
This allows us to generate synthetic training and testing data with 100x more objects than previous work.
arXiv Detail & Related papers (2023-11-09T18:57:02Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation [26.738893736520364]
We introduce a novel single-camera teleoperation system to collect the 3D demonstrations efficiently with only an iPad and a computer.
We construct a customized robot hand for each user in the physical simulator, which is a manipulator resembling the same kinematics structure and shape of the operator's hand.
With imitation learning using our data, we show large improvement over baselines with multiple complex manipulation tasks.
arXiv Detail & Related papers (2022-04-26T17:59:51Z) - DexVIP: Learning Dexterous Grasping with Human Hand Pose Priors from
Video [86.49357517864937]
We propose DexVIP, an approach to learn dexterous robotic grasping from human-object interaction videos.
We do this by curating grasp images from human-object interaction videos and imposing a prior over the agent's hand pose.
We demonstrate that DexVIP compares favorably to existing approaches that lack a hand pose prior or rely on specialized tele-operation equipment.
arXiv Detail & Related papers (2022-02-01T00:45:57Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.