Chasing Convex Functions with Long-term Constraints
- URL: http://arxiv.org/abs/2402.14012v2
- Date: Fri, 12 Jul 2024 15:44:38 GMT
- Title: Chasing Convex Functions with Long-term Constraints
- Authors: Adam Lechowicz, Nicolas Christianson, Bo Sun, Noman Bashir, Mohammad Hajiesmaili, Adam Wierman, Prashant Shenoy,
- Abstract summary: We introduce and study a family of online metric problems with long-term constraints.
Such problems can find a wide array of applications to online resource allocation in sustainable energy/computing systems.
- Score: 11.029788598491077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce and study a family of online metric problems with long-term constraints. In these problems, an online player makes decisions $\mathbf{x}_t$ in a metric space $(X,d)$ to simultaneously minimize their hitting cost $f_t(\mathbf{x}_t)$ and switching cost as determined by the metric. Over the time horizon $T$, the player must satisfy a long-term demand constraint $\sum_{t} c(\mathbf{x}_t) \geq 1$, where $c(\mathbf{x}_t)$ denotes the fraction of demand satisfied at time $t$. Such problems can find a wide array of applications to online resource allocation in sustainable energy/computing systems. We devise optimal competitive and learning-augmented algorithms for the case of bounded hitting cost gradients and weighted $\ell_1$ metrics, and further show that our proposed algorithms perform well in numerical experiments.
Related papers
- Monge-Kantorovich Fitting With Sobolev Budgets [6.748324975906262]
We quantify the performance of the approximation with the Monge-Kantorovich $p$-cost.
We may then reform the problem as minimizing a functional $mathscrJ_p(f)$ under a constraint on the Sobolev budget.
arXiv Detail & Related papers (2024-09-25T01:30:16Z) - Dueling Optimization with a Monotone Adversary [35.850072415395395]
We study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization.
The goal is to design an online algorithm to find a minimizer $mathbfx*$ for a function $fcolon X to mathbbRd.
arXiv Detail & Related papers (2023-11-18T23:55:59Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Solving Infinite-Domain CSPs Using the Patchwork Property [17.101875753030754]
The constraint problem (CSP) has important applications in computer science and AI.
A highly successful approach is to bound the treewidth of the underlying primal graph.
We improve this bound to $f(w)cdot nO(1)$, for CSPs whose basic relations have patchwork property.
arXiv Detail & Related papers (2021-07-03T13:04:41Z) - Revisiting Smoothed Online Learning [70.09792747315323]
We investigate the problem of smoothed online learning, in which the online learner suffers both a hitting cost and a switching cost.
To bound the competitive ratio, we assume the hitting cost is known to the learner in each round, and investigate the greedy algorithm which simply minimizes the weighted sum of the hitting cost and the switching cost.
arXiv Detail & Related papers (2021-02-13T14:15:55Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with
Constraints [8.849815837266977]
Constrained Markov Decision Processes (CMDPs) formalize sequential decision-making problems.
We propose an online algorithm which leverages the linear programming formulation of finite-horizon CMDP for repeated optimistic planning.
arXiv Detail & Related papers (2020-09-23T19:30:46Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z) - Naive Exploration is Optimal for Online LQR [49.681825576239355]
We show that the optimal regret scales as $widetildeTheta(sqrtd_mathbfu2 d_mathbfx T)$, where $T$ is the number of time steps, $d_mathbfu$ is the dimension of the input space, and $d_mathbfx$ is the dimension of the system state.
Our lower bounds rule out the possibility of a $mathrmpoly(logT)$-regret algorithm, which had been
arXiv Detail & Related papers (2020-01-27T03:44:54Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.