Solving Maxwells Equations using Variational Quantum Imaginary Time
Evolution
- URL: http://arxiv.org/abs/2402.14156v1
- Date: Wed, 21 Feb 2024 22:34:18 GMT
- Title: Solving Maxwells Equations using Variational Quantum Imaginary Time
Evolution
- Authors: Nam Nguyen, Richard Thompson
- Abstract summary: We show that VarQITE can efficiently approximate the solution of Maxwells equations with high accuracy.
Our findings suggest that VarQITE could provide a powerful tool for solving PDEs in electromagnetics and other fields.
- Score: 3.3838477077773925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maxwells equations are fundamental to our understanding of electromagnetic
fields, but their solution can be computationally demanding, even for
high-performance computing clusters. Quantum computers offer a promising
alternative for solving these equations, as they can simulate larger and more
complex systems more efficiently both in time and resources. In this paper we
investigate the potential of using the variational quantum imaginary time
evolution (VarQITE) algorithm on near-term quantum hardware to solve for the
Maxwells equations. Our objective is to analyze the trade-off between the
accuracy of the simulated fields and the depth of the quantum circuit required
to implement the VarQITE algorithm. We demonstrate that VarQITE can efficiently
approximate the solution of these equations with high accuracy, and show that
its performance can be enhanced by optimizing the quantum circuit depth. Our
findings suggest that VarQITE on near-term quantum devices could provide a
powerful tool for solving PDEs in electromagnetics and other fields.
Related papers
- Full Band Structure Calculation of Semiconducting Materials on a Noisy Quantum Processor [2.6327434138210095]
We propose the Reduced Quantum Equation-of-Motion method to find the entire energy spectrum of a quantum system.
We analyse the performance of our method on two noise models and calculate the excitation energies of a bulk Silicon and Gallium Arsenide using our method on an IBM quantum processor.
arXiv Detail & Related papers (2024-05-15T06:35:39Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
We present variational quantum algorithms (VQAs) that encode both space and time in qubit registers.
The spacetime encoding enables us to obtain the entire time evolution from a single ground-state computation.
arXiv Detail & Related papers (2024-03-25T14:06:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Quantum Algorithms for Solving Ordinary Differential Equations via
Classical Integration Methods [1.802439717192088]
We explore utilizing quantum computers for the purpose of solving differential equations.
We devise and simulate corresponding digital quantum circuits, and implement and run a 6$mathrmth$ order Gauss-Legendre collocation method.
As promising future scenario, the digital arithmetic method could be employed as an "oracle" within quantum search algorithms for inverse problems.
arXiv Detail & Related papers (2020-12-17T09:49:35Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.