Linear Transformers are Versatile In-Context Learners
- URL: http://arxiv.org/abs/2402.14180v2
- Date: Wed, 30 Oct 2024 04:27:00 GMT
- Title: Linear Transformers are Versatile In-Context Learners
- Authors: Max Vladymyrov, Johannes von Oswald, Mark Sandler, Rong Ge,
- Abstract summary: We prove that each layer of a linear transformer maintains a weight vector for an implicit linear regression problem.
We also investigate the use of linear transformers in a challenging scenario where the training data is corrupted with different levels of noise.
Remarkably, we demonstrate that for this problem linear transformers discover an intricate and highly effective optimization algorithm.
- Score: 19.988368693379087
- License:
- Abstract: Recent research has demonstrated that transformers, particularly linear attention models, implicitly execute gradient-descent-like algorithms on data provided in-context during their forward inference step. However, their capability in handling more complex problems remains unexplored. In this paper, we prove that each layer of a linear transformer maintains a weight vector for an implicit linear regression problem and can be interpreted as performing a variant of preconditioned gradient descent. We also investigate the use of linear transformers in a challenging scenario where the training data is corrupted with different levels of noise. Remarkably, we demonstrate that for this problem linear transformers discover an intricate and highly effective optimization algorithm, surpassing or matching in performance many reasonable baselines. We analyze this algorithm and show that it is a novel approach incorporating momentum and adaptive rescaling based on noise levels. Our findings show that even linear transformers possess the surprising ability to discover sophisticated optimization strategies.
Related papers
- Graph Transformers Dream of Electric Flow [72.06286909236827]
We show that the linear Transformer, when applied to graph data, can implement algorithms that solve canonical problems.
We present explicit weight configurations for implementing each such graph algorithm, and we bound the errors of the constructed Transformers by the errors of the underlying algorithms.
arXiv Detail & Related papers (2024-10-22T05:11:45Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Your Transformer is Secretly Linear [7.935853865895353]
We analyze embedding transformations between sequential layers, uncovering a near-perfect linear relationship.
We show that removing or linearly approximating some of the most linear blocks of transformers does not affect significantly the loss or model performance.
In our pretraining experiments on smaller models we introduce a cosine-similarity-based regularization, aimed at reducing layer linearity.
arXiv Detail & Related papers (2024-05-19T22:44:00Z) - How Well Can Transformers Emulate In-context Newton's Method? [46.08521978754298]
We study whether Transformers can perform higher order optimization methods, beyond the case of linear regression.
We demonstrate the ability of even linear attention-only Transformers in implementing a single step of Newton's iteration for matrix inversion with merely two layers.
arXiv Detail & Related papers (2024-03-05T18:20:10Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z) - Momentum Transformer: Closing the Performance Gap Between Self-attention
and Its Linearization [31.28396970291575]
Leveraging techniques include sparse and linear attention and hashing tricks; efficient transformers have been proposed to reduce the quadratic complexity of transformers but significantly degrade the accuracy.
We first interpret the linear attention and residual connections in computing the attention map as gradient descent steps.
We then introduce momentum into these components and propose the emphmomentum transformer, which utilizes momentum to improve the accuracy of linear transformers while maintaining linear memory and computational complexities.
arXiv Detail & Related papers (2022-08-01T02:37:49Z) - Finetuning Pretrained Transformers into RNNs [81.72974646901136]
Transformers have outperformed recurrent neural networks (RNNs) in natural language generation.
A linear-complexity recurrent variant has proven well suited for autoregressive generation.
This work aims to convert a pretrained transformer into its efficient recurrent counterpart.
arXiv Detail & Related papers (2021-03-24T10:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.