Estimating Unknown Population Sizes Using the Hypergeometric Distribution
- URL: http://arxiv.org/abs/2402.14220v2
- Date: Sun, 9 Jun 2024 21:43:28 GMT
- Title: Estimating Unknown Population Sizes Using the Hypergeometric Distribution
- Authors: Liam Hodgson, Danilo Bzdok,
- Abstract summary: We tackle the challenge of estimating discrete distributions when both the total population size and the sizes of its constituent categories are unknown.
We develop our approach to account for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable.
Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data.
- Score: 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The multivariate hypergeometric distribution describes sampling without replacement from a discrete population of elements divided into multiple categories. Addressing a gap in the literature, we tackle the challenge of estimating discrete distributions when both the total population size and the sizes of its constituent categories are unknown. Here, we propose a novel solution using the hypergeometric likelihood to solve this estimation challenge, even in the presence of severe under-sampling. We develop our approach to account for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable, such as with collaborative filtering, using the variational autoencoder framework. Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data, both in terms of accuracy of population size estimate and in its ability to learn an informative latent space. We demonstrate our method's versatility through applications in NLP, by inferring and estimating the complexity of latent vocabularies in text excerpts, and in biology, by accurately recovering the true number of gene transcripts from sparse single-cell genomics data.
Related papers
- Generative modeling of density regression through tree flows [3.0262553206264893]
We propose a flow-based generative model tailored for the density regression task on tabular data.
We introduce a training algorithm for fitting the tree-based transforms using a divide-and-conquer strategy.
Our method consistently achieves comparable or superior performance at a fraction of the training and sampling budget.
arXiv Detail & Related papers (2024-06-07T21:07:35Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - StyleGenes: Discrete and Efficient Latent Distributions for GANs [149.0290830305808]
We propose a discrete latent distribution for Generative Adversarial Networks (GANs)
Instead of drawing latent vectors from a continuous prior, we sample from a finite set of learnable latents.
We take inspiration from the encoding of information in biological organisms.
arXiv Detail & Related papers (2023-04-30T23:28:46Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Marginalization in Bayesian Networks: Integrating Exact and Approximate
Inference [0.0]
Missing data and hidden variables require calculating the marginal probability distribution of a subset of the variables.
We develop a divide-and-conquer approach using the graphical properties of Bayesian networks.
We present an efficient and scalable algorithm for estimating the marginal probability distribution for categorical variables.
arXiv Detail & Related papers (2021-12-16T21:49:52Z) - GENs: Generative Encoding Networks [4.269725092203672]
We propose and analyze the use of nonparametric density methods to estimate the Jensen-Shannon divergence for matching unknown data distributions to known target distributions.
This analytical method has several advantages: better behavior when training sample quantity is low, provable convergence properties, and relatively few parameters, which can be derived analytically.
arXiv Detail & Related papers (2020-10-28T23:40:03Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - The Bures Metric for Generative Adversarial Networks [10.69910379275607]
Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples.
We propose to match the real batch diversity to the fake batch diversity.
We observe that diversity matching reduces mode collapse substantially and has a positive effect on the sample quality.
arXiv Detail & Related papers (2020-06-16T12:04:41Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.