論文の概要: Mitigating Biases of Large Language Models in Stance Detection with Calibration
- arxiv url: http://arxiv.org/abs/2402.14296v2
- Date: Sun, 16 Jun 2024 12:04:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 05:56:21.953190
- Title: Mitigating Biases of Large Language Models in Stance Detection with Calibration
- Title(参考訳): 校正によるスタンス検出における大規模言語モデルの緩和バイアス
- Authors: Ang Li, Jingqian Zhao, Bin Liang, Lin Gui, Hui Wang, Xi Zeng, Xingwei Liang, Kam-Fai Wong, Ruifeng Xu,
- Abstract要約: 大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な進歩を遂げている。
スタンス検出タスクでは、LLMは感情バイアスの相関や特定の個人やトピックに対する嗜好による偏りのあるスタンスを生成する可能性がある。
我々はスプリアス(MB-Cal)を用いた姿勢検出におけるLCMのバイアス軽減法を提案する。
- 参考スコア(独自算出の注目度): 43.02857908228108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved remarkable progress in many natural language processing tasks. However, our experiment reveals that, in stance detection tasks, LLMs may generate biased stances due to sentiment-stance spurious correlations and preference towards certain individuals and topics, thus harming their performance. Therefore, in this paper, we propose to Mitigate Biases of LLMs in stance detection with Calibration (MB-Cal). To be specific, a novel calibration network is devised to calibrate potential bias in the stance prediction of LLMs. Further, to address the challenge of effectively learning bias representations and the difficulty in the generalizability of debiasing, we construct counterfactual augmented data. This approach enhances the calibration network, facilitating the debiasing and out-of-domain generalization. Experimental results on in-target and zero-shot stance detection tasks show that the proposed MB-Cal can effectively mitigate biases of LLMs, achieving state-of-the-art results.
- Abstract(参考訳): 大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な進歩を遂げている。
しかし, 本研究では, 姿勢検出タスクにおいて, LLMが特定の個人やトピックに対する感情と刺激の相関や嗜好に起因して, 偏りのある姿勢を生じさせ, 性能を損なう可能性が示唆された。
そこで本稿では,キャリブレーション(MB-Cal)を用いた姿勢検出におけるLCMのバイアス軽減手法を提案する。
具体的には、LCMの姿勢予測における潜在的なバイアスをキャリブレーションするために、新しいキャリブレーションネットワークを考案した。
さらに,バイアス表現を効果的に学習する上での課題と,デバイアスの一般化性の難しさに対処するために,デバイアスデータを構築した。
このアプローチはキャリブレーションネットワークを強化し、デバイアス化とドメイン外一般化を容易にする。
ターゲット内およびゼロショット姿勢検出タスクの実験結果から,提案したMB-CalはLLMのバイアスを効果的に軽減し,最先端の結果が得られることが示された。
関連論文リスト
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
大規模言語モデル(LLM)は評価タスク、特に優先的に評価し、自己生成したコンテンツを好む場合に重大なバイアスを示す。
本研究では,この知識ギャップを,検索強化世代(RAG)フレームワークの2つの重要なフェーズをシミュレートすることによって解決する。
以上の結果とは対照的に,RAGフレームワークに有意な自己選好効果は認められなかった。
論文 参考訳(メタデータ) (2024-10-28T08:32:09Z) - Uncovering Biases with Reflective Large Language Models [2.5200794639628032]
人間のラベル付きデータのバイアスとエラーは、機械学習にとって重要な課題である。
本稿では,多種多様な視点を明らかにするために,構造化逆対話を利用した反射型LLM対話フレームワーク RLDF を提案する。
実験の結果、RDDFは人間のラベル付きデータの制限を露呈しながら、公開コンテンツの潜在的なバイアスを特定することに成功した。
論文 参考訳(メタデータ) (2024-08-24T04:48:32Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Towards Understanding Task-agnostic Debiasing Through the Lenses of Intrinsic Bias and Forgetfulness [10.081447621656523]
言語モデリング能力に影響を及ぼす影響は、高品質でコンテキストの長いデバイアスコーパスによって緩和することができる。
タスク依存型デバイアスングヒンジの有効性は、下流アプリケーションに使用されるタスク固有データとデバイアスドモデルの両方の量的バイアスレベルに影響を及ぼす。
本稿では,ソーシャル・フェア・デバイアスを下流ファインチューニング,ProSocialTuningに伝達する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T15:11:11Z) - UniBias: Unveiling and Mitigating LLM Bias through Internal Attention and FFN Manipulation [12.04811490937078]
フィードフォワードニューラルネットワーク(FFN)とアテンションヘッドが大規模言語モデル(LLM)のバイアスをもたらすかを検討する。
これらのバイアスを軽減するために,推定のみの手法であるUniBiasを導入し,バイアス付きFFNベクトルとアテンションヘッドを効果的に識別・除去する。
論文 参考訳(メタデータ) (2024-05-31T03:59:15Z) - Beyond Performance: Quantifying and Mitigating Label Bias in LLMs [8.77694178599322]
モデル予測におけるラベルバイアスを定量化するための様々なアプローチを評価する。
本研究により, 脱バイアス前後のモデルに有意なラベルバイアスが認められた。
数発のプロンプトに適したラベルバイアス校正法を提案する。
論文 参考訳(メタデータ) (2024-05-04T19:53:03Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。