論文の概要: Fine-Grained Bias Detection in LLM: Enhancing detection mechanisms for nuanced biases
- arxiv url: http://arxiv.org/abs/2503.06054v1
- Date: Sat, 08 Mar 2025 04:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:52:33.735095
- Title: Fine-Grained Bias Detection in LLM: Enhancing detection mechanisms for nuanced biases
- Title(参考訳): LLMにおける微粒バイアス検出:ニュアンスバイアス検出機構の強化
- Authors: Suvendu Mohanty,
- Abstract要約: 本研究では,Large Language Models (LLMs) におけるニュアンスバイアス検出フレームワークを提案する。
このアプローチは、コンテキスト分析、注意機構による解釈可能性、および反ファクトデータ拡張を統合して、隠れたバイアスをキャプチャする。
その結果,従来の方法に比べて微妙な偏見の検出精度が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advancements in Artificial Intelligence, particularly in Large Language Models (LLMs), have transformed natural language processing by improving generative capabilities. However, detecting biases embedded within these models remains a challenge. Subtle biases can propagate misinformation, influence decision-making, and reinforce stereotypes, raising ethical concerns. This study presents a detection framework to identify nuanced biases in LLMs. The approach integrates contextual analysis, interpretability via attention mechanisms, and counterfactual data augmentation to capture hidden biases across linguistic contexts. The methodology employs contrastive prompts and synthetic datasets to analyze model behaviour across cultural, ideological, and demographic scenarios. Quantitative analysis using benchmark datasets and qualitative assessments through expert reviews validate the effectiveness of the framework. Results show improvements in detecting subtle biases compared to conventional methods, which often fail to highlight disparities in model responses to race, gender, and socio-political contexts. The framework also identifies biases arising from imbalances in training data and model architectures. Continuous user feedback ensures adaptability and refinement. This research underscores the importance of proactive bias mitigation strategies and calls for collaboration between policymakers, AI developers, and regulators. The proposed detection mechanisms enhance model transparency and support responsible LLM deployment in sensitive applications such as education, legal systems, and healthcare. Future work will focus on real-time bias monitoring and cross-linguistic generalization to improve fairness and inclusivity in AI-driven communication tools.
- Abstract(参考訳): 人工知能の最近の進歩、特にLarge Language Models(LLMs)は、生成能力を改善することで自然言語処理を変革している。
しかし、これらのモデルに埋め込まれたバイアスを検出することは依然として困難である。
下位バイアスは誤報を伝播させ、意思決定に影響を与え、ステレオタイプを強化し、倫理的懸念を提起する。
本研究では,LLMにおけるニュアンスバイアスを検出する枠組みを提案する。
このアプローチは、コンテキスト分析、注意機構による解釈可能性、および対実データ拡張を統合して、言語コンテキスト全体にわたる隠れバイアスをキャプチャする。
この手法は対照的なプロンプトと合成データセットを使用して、文化、イデオロギー、人口統計のシナリオにわたるモデル行動を分析する。
ベンチマークデータセットと定性評価を用いた定量的分析は、フレームワークの有効性を検証する。
その結果, 人種, 性別, 社会的政治的文脈に対するモデル応答の相違を強調できない従来の手法と比較して, 微妙な偏見の検出精度が向上した。
このフレームワークはまた、トレーニングデータとモデルアーキテクチャの不均衡から生じるバイアスを識別する。
継続的なユーザフィードバックは、適応性と改善を保証する。
この研究は、積極的なバイアス緩和戦略の重要性を強調し、政策立案者、AI開発者、規制当局の協力を求める。
提案する検出メカニズムは、モデルの透明性を高め、教育、法体系、医療などのセンシティブなアプリケーションにおける責任あるLCMデプロイメントを支援する。
将来的には、AI駆動コミュニケーションツールの公正性と傾きを改善するために、リアルタイムバイアス監視と言語間一般化に焦点を当てる予定である。
関連論文リスト
- Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
本稿では,社会言語学的属性・ジェンダー,CEFR習熟度,学術分野,言語環境に影響を及ぼすAIテキスト検出装置について検討する。
CEFRの習熟度と言語環境は一貫して検出器の精度に影響を与え,性別や学術分野は検出器に依存した効果を示した。
これらの発見は、特定の人口集団に不公平に罰を与えるのを避けるために、社会的に認識されたAIテキストの検出が不可欠であることを示している。
論文 参考訳(メタデータ) (2025-02-18T07:49:31Z) - Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Advancing Fairness in Natural Language Processing: From Traditional Methods to Explainability [0.9065034043031668]
この論文は、NLPシステムにおける株式と透明性の必要性に対処している。
高リスクNLPアプリケーションにおけるバイアスを軽減する革新的なアルゴリズムを導入している。
また、トランスフォーマーモデルの概念を特定し、ランク付けするモデルに依存しない説明可能性法を提案する。
論文 参考訳(メタデータ) (2024-10-16T12:38:58Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Towards detecting unanticipated bias in Large Language Models [1.4589372436314496]
LLM(Large Language Models)は、従来の機械学習システムと同様の公平性問題を示す。
本研究は、トレーニングデータにおけるバイアスの分析と定量化と、それらのモデルの決定に対する影響に焦点を当てる。
論文 参考訳(メタデータ) (2024-04-03T11:25:20Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
アスペクトベースの感情分析(ABSA)は、ソーシャルメディアのテキストやレビューの背後にある製品やサービスの特定の側面に対して、特定の感情の極性を自動的に推測することを目的としている。
我々は、モデル、データ、トレーニングを含むあらゆる可能な角度からボトルネックを体系的に再考することで、ABSAの堅牢性を高めることを提案する。
論文 参考訳(メタデータ) (2023-04-19T11:07:43Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。