論文の概要: Uncertainty-driven and Adversarial Calibration Learning for Epicardial
Adipose Tissue Segmentation
- arxiv url: http://arxiv.org/abs/2402.14349v2
- Date: Fri, 23 Feb 2024 07:52:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 11:45:28.230659
- Title: Uncertainty-driven and Adversarial Calibration Learning for Epicardial
Adipose Tissue Segmentation
- Title(参考訳): 心臓表層組織分別のための不確かさ駆動・逆境校正学習
- Authors: Kai Zhao, Zhiming Liu, Jiaqi Liu, Jingbiao Zhou, Bihong Liao, Huifang
Tang, Qiuyu Wang, Chunquan Li
- Abstract要約: 心膜脂肪組織(EAT)は、大量のアディポカインを分泌し心筋や冠動脈に影響を及ぼすことのできる内臓脂肪の一種である。
より正確なEATボリューム推定のためのセグメンテーションを強化するために,不確実性駆動・対角校正学習を備えた新しい特徴量空間多レベル監視ネットワーク(SPDNet)を提案する。
- 参考スコア(独自算出の注目度): 12.748840107754337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epicardial adipose tissue (EAT) is a type of visceral fat that can secrete
large amounts of adipokines to affect the myocardium and coronary arteries. EAT
volume and density can be used as independent risk markers measurement of
volume by noninvasive magnetic resonance images is the best method of assessing
EAT. However, segmenting EAT is challenging due to the low contrast between EAT
and pericardial effusion and the presence of motion artifacts. we propose a
novel feature latent space multilevel supervision network (SPDNet) with
uncertainty-driven and adversarial calibration learning to enhance segmentation
for more accurate EAT volume estimation. The network first addresses the
blurring of EAT edges due to the medical images in the open medical
environments with low quality or out-of-distribution by modeling the
uncertainty as a Gaussian distribution in the feature latent space, which using
its Bayesian estimation as a regularization constraint to optimize SwinUNETR.
Second, an adversarial training strategy is introduced to calibrate the
segmentation feature map and consider the multi-scale feature differences
between the uncertainty-guided predictive segmentation and the ground truth
segmentation, synthesizing the multi-scale adversarial loss directly improves
the ability to discriminate the similarity between organizations. Experiments
on both the cardiac public MRI dataset (ACDC) and the real-world clinical
cohort EAT dataset show that the proposed network outperforms mainstream
models, validating that uncertainty-driven and adversarial calibration learning
can be used to provide additional information for modeling multi-scale
ambiguities.
- Abstract(参考訳): 心膜脂肪組織(EAT)は、大量のアディポカインを分泌し心筋や冠動脈に影響を及ぼすことのできる内臓脂肪の一種である。
EATの体積と密度は、非侵襲的な磁気共鳴画像による体積の独立したリスクマーカーとして利用することができる。
しかし, EATと心膜灌流の低コントラストと運動人工物の存在により, EATのセグメンテーションは困難である。
より正確なEATボリューム推定のためのセグメンテーションを強化するために,不確実性駆動・対角校正学習を備えた新しい特徴量空間多レベル監視ネットワーク(SPDNet)を提案する。
このネットワークは、まず、そのベイズ推定を正規化制約としてSwinUNETRを最適化する機能潜在空間におけるガウス分布として、不確実性をモデル化することにより、医療環境における医療画像の質の低下や分布外によるEATエッジのぼやけに対処する。
第二に、セグメント化特徴マップを校正し、不確実性誘導予測セグメンテーションと基底真理セグメンテーションのマルチスケール特徴差を考察し、マルチスケールの敵損失を直接合成することにより、組織間の類似性を識別する能力を向上させる。
心的MRIデータセット(ACDC)と実世界の臨床コホートEATデータセットの両方の実験により、提案されたネットワークは主流モデルよりも優れており、不確実性駆動および対角校正学習がマルチスケールの曖昧さをモデル化するための追加情報を提供することができることが検証された。
関連論文リスト
- Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
本研究の目的は, 診断センターとクリニックが, 小型・低品質のSPECTラベルに基づいて自動的に心筋のセグメンテーションを行うためのレシピを提供することである。
SPECT装置の様々な領域における3次元U-Net自己教師学習(SSL)アプローチを強化するために,CMF(Continuous Max-Flow)と事前形状情報の組み合わせを開発した。
論文 参考訳(メタデータ) (2024-05-09T03:19:19Z) - Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation [3.0665936758208447]
深層学習法は多くの医用画像セグメンテーションタスクにおいて最先端の性能を達成した。
最近の研究では、ディープニューラルネットワーク(DNN)が誤解され、過信され、"サイレント障害"につながることが示されている。
医療データ増大に対応するため,Hachian Monte Carlo (HMC) を用いたベイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-04T18:47:56Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Towards Enabling Cardiac Digital Twins of Myocardial Infarction Using
Deep Computational Models for Inverse Inference [6.447210290674733]
シミュレーションされたQRSから脳梗塞の位置と分布を推定するために,二分岐変分オートエンコーダと推論モデルからなる新しい深部計算モデルを提案する。
感度分析により、脳梗塞の特徴と電気生理学的特徴との複雑な関係の理解が促進される。
論文 参考訳(メタデータ) (2023-07-10T08:54:12Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images [10.011212599949541]
本研究は,CT画像の多臓器セマンティックセマンティックセグメンテーションを改善するために,新しいCNNに基づく対角深層学習法を開発することを目的とする。
MRF(Markov Random Field)拡張ネットワーク (ARPM-net) は, 対向学習方式を実装している。
モデル輪郭の精度はDice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), relative Volume difference (VD) を用いて測定した。
論文 参考訳(メタデータ) (2020-08-11T02:40:53Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。