論文の概要: Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
- arxiv url: http://arxiv.org/abs/2301.00349v3
- Date: Sun, 14 Apr 2024 03:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 00:36:54.870122
- Title: Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
- Title(参考訳): 証拠校正不確実性を利用した医用画像の信頼性確保に向けて
- Authors: Ke Zou, Yidi Chen, Ling Huang, Xuedong Yuan, Xiaojing Shen, Meng Wang, Rick Siow Mong Goh, Yong Liu, Huazhu Fu,
- Abstract要約: 本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
- 参考スコア(独自算出の注目度): 52.03490691733464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is critical for disease diagnosis and treatment assessment. However, concerns regarding the reliability of segmentation regions persist among clinicians, mainly attributed to the absence of confidence assessment, robustness, and calibration to accuracy. To address this, we introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks. DEviS not only enhances the calibration and robustness of baseline segmentation accuracy but also provides high-efficiency uncertainty estimation for reliable predictions. By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation. Here, the Dirichlet distribution parameterizes the distribution of probabilities for different classes of the segmentation results. To generate calibrated predictions and uncertainty, we develop a trainable calibrated uncertainty penalty. Furthermore, DEviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data within the dataset. We conducted validation studies to assess both the accuracy and robustness of DEviS segmentation, along with evaluating the efficiency and reliability of uncertainty estimation. These evaluations were performed using publicly available datasets including ISIC2018, LiTS2017, and BraTS2019. Additionally, two potential clinical trials are being conducted at Johns Hopkins OCT, Duke-OCT-DME, and FIVES datasets to demonstrate their efficacy in filtering high-quality or out-of-distribution data. Our code has been released in https://github.com/Cocofeat/DEviS.
- Abstract(参考訳): 医用画像のセグメンテーションは、疾患の診断と治療評価に重要である。
しかし, セグメンテーション領域の信頼性に関する懸念は, 信頼性評価, 堅牢性, 校正精度の欠如に起因する。
そこで我々は,様々な医用画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
DEviSは、基準線分割精度の校正とロバスト性を向上するだけでなく、信頼性の高い予測のための高効率不確実性推定も提供する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
ここで、ディリクレ分布は、セグメント化結果の異なるクラスに対する確率の分布をパラメータ化する。
校正予測と不確実性を生成するため,訓練可能な校正不確実性ペナルティを開発する。
さらに、DEviSには不確実性対応のフィルタリングモジュールが組み込まれており、不確実性校正エラーのメトリックを使用してデータセット内の信頼性データをフィルタリングする。
我々は,DviSセグメンテーションの精度とロバスト性を評価するとともに,不確実性推定の効率と信頼性を評価するための検証研究を行った。
これらの評価は、ISIC2018、LiTS2017、BraTS2019などの公開データセットを使用して実施された。
さらに、ジョンズホプキンスOCT、デュークOCT-DME、FIVESの2つの臨床試験が実施され、高品質またはアウト・オブ・ディストリビューションデータのフィルタリングの有効性が実証されている。
私たちのコードはhttps://github.com/Cocofeat/DEviS.comでリリースされています。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Predictive Accuracy-Based Active Learning for Medical Image Segmentation [5.25147264940975]
医用画像セグメンテーションのための効果的な予測精度に基づく能動学習法を提案する。
PAALは、精度予測器(AP)と軽量ポーリング戦略(WPS)から構成される。
複数のデータセットに対する実験結果は、PAALの優位性を示している。
論文 参考訳(メタデータ) (2024-05-01T11:12:08Z) - EDUE: Expert Disagreement-Guided One-Pass Uncertainty Estimation for Medical Image Segmentation [1.757276115858037]
本稿では,医用画像分割のためのエキスパート診断誘導不確実性推定(EDUE)を提案する。
複数のラッカーからの接地構文アノテーションの可変性を活用することにより、トレーニング中のモデルをガイドし、ランダムサンプリングに基づく戦略を取り入れ、校正信頼性を高める。
論文 参考訳(メタデータ) (2024-03-25T10:13:52Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
深層学習は高い予測精度と不確実性推定を実現することが示されている。
テスト時の入力画像のゆがみは、パフォーマンスを著しく低下させる可能性がある。
LaDiNEは,入力画像から情報および不変潜伏変数を推定できる,新規で堅牢な確率的手法である。
論文 参考訳(メタデータ) (2023-10-24T15:53:07Z) - BSM loss: A superior way in modeling aleatory uncertainty of
fine_grained classification [0.0]
混合データ拡張戦略を用いた改良型ブートストラップ損失(BS損失)関数を提案する。
実験の結果,Mixup(BSM)モデルによるBS損失は,標準データ拡張と比較して予測誤差(ECE)を半減できることがわかった。
BSMモデルはドメイン外のデータのセマンティックな距離を知覚することができ、実際の臨床実践において高い可能性を示す。
論文 参考訳(メタデータ) (2022-06-09T13:06:51Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。