HR-APR: APR-agnostic Framework with Uncertainty Estimation and Hierarchical Refinement for Camera Relocalisation
- URL: http://arxiv.org/abs/2402.14371v2
- Date: Thu, 18 Apr 2024 21:29:39 GMT
- Title: HR-APR: APR-agnostic Framework with Uncertainty Estimation and Hierarchical Refinement for Camera Relocalisation
- Authors: Changkun Liu, Shuai Chen, Yukun Zhao, Huajian Huang, Victor Prisacariu, Tristan Braud,
- Abstract summary: Absolute Pose Regressors (APRs) directly estimate camera poses from monocular images, but their accuracy is unstable for different queries.
Uncertainty-aware APRs provide uncertainty information on the estimated pose, alleviating the impact of these unreliable predictions.
This work introduces a novel APR-agnostic framework, HR-APR, that formulates uncertainty estimation as cosine similarity estimation between the query and database features.
- Score: 12.333674270678552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Absolute Pose Regressors (APRs) directly estimate camera poses from monocular images, but their accuracy is unstable for different queries. Uncertainty-aware APRs provide uncertainty information on the estimated pose, alleviating the impact of these unreliable predictions. However, existing uncertainty modelling techniques are often coupled with a specific APR architecture, resulting in suboptimal performance compared to state-of-the-art (SOTA) APR methods. This work introduces a novel APR-agnostic framework, HR-APR, that formulates uncertainty estimation as cosine similarity estimation between the query and database features. It does not rely on or affect APR network architecture, which is flexible and computationally efficient. In addition, we take advantage of the uncertainty for pose refinement to enhance the performance of APR. The extensive experiments demonstrate the effectiveness of our framework, reducing 27.4\% and 15.2\% of computational overhead on the 7Scenes and Cambridge Landmarks datasets while maintaining the SOTA accuracy in single-image APRs.
Related papers
- Causal Perception Inspired Representation Learning for Trustworthy Image Quality Assessment [2.290956583394892]
We propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL)
CPRL serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations.
Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods.
arXiv Detail & Related papers (2024-04-30T13:55:30Z) - Uncertainty-boosted Robust Video Activity Anticipation [72.14155465769201]
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision to autonomous driving.
Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored.
We propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results.
arXiv Detail & Related papers (2024-04-29T12:31:38Z) - On the Estimation of Image-matching Uncertainty in Visual Place Recognition [7.769607568805291]
In Visual Place Recognition (VPR) the pose of a query image is estimated by comparing the image to a map of reference images with known reference poses.
This work compares for the first time the main approaches for estimating the image-matching uncertainty.
We formulate a simple baseline method, SUE'', which unlike the other methods considers the freely-available poses of the reference images in the map.
arXiv Detail & Related papers (2024-03-31T03:24:48Z) - Enabling Uncertainty Estimation in Iterative Neural Networks [49.56171792062104]
We develop an approach to uncertainty estimation that provides state-of-the-art estimates at a much lower computational cost than techniques like Ensembles.
We demonstrate its practical value by embedding it in two application domains: road detection in aerial images and the estimation of aerodynamic properties of 2D and 3D shapes.
arXiv Detail & Related papers (2024-03-25T13:06:31Z) - Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration [32.081258147692395]
We propose a framework for heteroscedastic image uncertainty estimation.
It can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.
Our method consistently outperforms baselines and produces sensible uncertainty estimates.
arXiv Detail & Related papers (2023-12-01T01:03:06Z) - KS-APR: Keyframe Selection for Robust Absolute Pose Regression [2.541264438930729]
Markerless Mobile Augmented Reality (AR) aims to anchor digital content in the physical world without using specific 2D or 3D objects.
End-to-end machine learning solutions infer the device's pose from a single monocular image.
APR methods tend to yield significant inaccuracies for input images that are too distant from the training set.
This paper introduces KS-APR, a pipeline that assesses the reliability of an estimated pose with minimal overhead.
arXiv Detail & Related papers (2023-08-10T09:32:20Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Understanding the Effects of Adversarial Personalized Ranking
Optimization Method on Recommendation Quality [6.197934754799158]
We model the learning characteristics of the Bayesian Personalized Ranking (BPR) and APR optimization frameworks.
We show that APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items.
arXiv Detail & Related papers (2021-07-29T10:22:20Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.