Tunneling time, the barrier time-delay and weak measurement What was or can actually be measured with the Attoclock?
- URL: http://arxiv.org/abs/2402.14431v2
- Date: Tue, 2 Apr 2024 15:45:11 GMT
- Title: Tunneling time, the barrier time-delay and weak measurement What was or can actually be measured with the Attoclock?
- Authors: Ossama Kullie,
- Abstract summary: We show that the barrier time-delay can be convincingly defined and determined from the difference between the time-delay of adiabatic and nonadiabatic tunnel-ionization.
In the weak measurement limit, the barrier time-delay corresponds to the Larmor-clock time and the interaction time within the barrier.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The measurement of the tunneling time-delay in attosecond experiments, termed attoclock, despite its controversies, offers a fruitful opportunity to understand the tunneling time and the tunnel-ionization process. In previous work, we showed a model that well describes the time-delay measured by the attoclock experiment in the adiabatic and nonadiabatic field calibrations. In the present work we show that the tunneling time reveals a universal behavior, with disentangled contribution, where the barrier time-delay can be convincingly defined and determined from the difference between the time-delay of adiabatic and nonadiabatic tunnel-ionization, with good agreement with the experimental result. Furthermore, we show that in the weak measurement limit, the barrier time-delay corresponds to the Larmor-clock time and the interaction time within the barrier.
Related papers
- Extralonger: Toward a Unified Perspective of Spatial-Temporal Factors for Extra-Long-Term Traffic Forecasting [69.4265346261936]
We introduce Extralonger, which unifies temporal and spatial factors.
It notably extends the prediction horizon to a week on real-world benchmarks.
It sets new standards in long-term and extra-long-term scenarios.
arXiv Detail & Related papers (2024-10-30T04:28:20Z) - A unified theory of tunneling times promoted by Ramsey clocks [0.0]
We study the time read off via a Ramsey sequence after the tunneling process.
We unifies definitions of tunneling delay within one approach.
We highlight that there exists no superluminal or instantaneous tunneling.
arXiv Detail & Related papers (2024-04-22T17:36:34Z) - Neural Laplace Control for Continuous-time Delayed Systems [76.81202657759222]
We propose a continuous-time model-based offline RL method that combines a Neural Laplace dynamics model with a model predictive control (MPC) planner.
We show experimentally on continuous-time delayed environments it is able to achieve near expert policy performance.
arXiv Detail & Related papers (2023-02-24T12:40:28Z) - Sub-barrier recollisions and the three classes of tunneling time delays
in strong-field ionization [0.0]
We investigate the effects of sub-barrier recolliding on the time delay pattern at the tunnel exit.
We conclude that the interference of the direct and recolliding trajectories decreases the tunneling time delay at the exit.
arXiv Detail & Related papers (2022-08-23T13:11:21Z) - Wave manipulation via delay-engineered periodic potentials [55.41644538483948]
We discuss the semi-classical transverse trapping of waves by means of an inhomogeneous gauge field.
We show that, due to the Kapitza effect, an effective potential proportional to the square of the transverse derivative of the delay arises.
arXiv Detail & Related papers (2022-07-27T11:45:32Z) - Numerical simulations of quantum clock for measuring tunneling times [0.0]
We numerically study two methods of measuring tunneling times using a quantum clock.
In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers.
In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier.
arXiv Detail & Related papers (2022-07-26T18:18:39Z) - A General Scenario of Tunneling Time in Different Energy Regimes [0.0]
We study the tunneling time by investigating a wave packet of Bose-condensed atoms passing through a square barrier.
For negative incident energy of the wave packet, counterintuitively, the tunneling time decreases very rapidly with decreasing incident velocity.
For positive incident energy smaller than the barrier height, the tunneling time increases slowly and then reaches a maximum.
arXiv Detail & Related papers (2022-05-19T08:51:42Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Time-dependent Interactions in Tunnelling Dynamics [0.5874142059884518]
Tunnelling of a particle through a potential barrier is investigated in the presence of a time-dependent perturbation.
The calculation of the probability density inside the barrier proves that the tunnelling dynamics is determined.
A new method of estimating the tunnelling time by energy experimental measuring is proposed.
arXiv Detail & Related papers (2022-02-14T18:00:10Z) - Observing coherences with time-resolved photoemission [77.34726150561087]
We discuss the potential creation and measurement of coherences in both dispersive solids and qubit-like single levels using current generation time- and angle-resolved photoemission technology.
We show that in both cases, when both the pump and the probe overlap energetically with the coherent levels, that the time-resolved photoemission signal shows a beating pattern at the energy difference between the levels.
In the case of dispersive bands, this leads to momentum-dependent oscillations, which may be used to map out small energy scales in the band structure.
arXiv Detail & Related papers (2020-05-18T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.