Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond
- URL: http://arxiv.org/abs/2402.14522v2
- Date: Fri, 12 Jul 2024 10:39:28 GMT
- Title: Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond
- Authors: Xinyu Wang, Hainiu Xu, Lin Gui, Yulan He,
- Abstract summary: We propose a framework for unified task embeddings (FUTE), task embeddings from various models, including smaller language models and Large Language Models with varied prompts, within a single vector space.
Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios.
- Score: 16.913115978881866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Task embedding, a meta-learning technique that captures task-specific information, has gained popularity, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradient-free manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To hardness the potential of task embeddings in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables comparison and analysis of similarities amongst different models, broadening the scope and utility of existing task embedding methods in multi-model scenarios, while maintaining their performance comparable to architecture-specific methods.
Related papers
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model [11.885204227946549]
We propose a comprehensive model designed to represent various tasks using a unified representation.
Our model exhibits strong capabilities in comprehending the implicit intent of user instructions.
Our approach exhibits exceptional scalability and generality.
arXiv Detail & Related papers (2024-08-05T14:27:39Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
We introduce a new unsupervised text embedding method, Meta-Task Prompting with Explicit One-Word Limitation.
We generate high-quality sentence embeddings from Large Language Models without the need for model fine-tuning.
Our findings suggest a new scaling law, offering a versatile and resource-efficient approach for embedding generation across diverse scenarios.
arXiv Detail & Related papers (2024-02-28T16:35:52Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks.
With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
arXiv Detail & Related papers (2023-05-11T17:57:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.