論文の概要: {A New Hope}: Contextual Privacy Policies for Mobile Applications and An
Approach Toward Automated Generation
- arxiv url: http://arxiv.org/abs/2402.14544v1
- Date: Thu, 22 Feb 2024 13:32:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 15:03:30.096888
- Title: {A New Hope}: Contextual Privacy Policies for Mobile Applications and An
Approach Toward Automated Generation
- Title(参考訳): 新しい希望:モバイルアプリケーションのコンテキストプライバシーポリシーと自動生成へのアプローチ
- Authors: Shidong Pan, Zhen Tao, Thong Hoang, Dawen Zhang, Tianshi Li, Zhenchang
Xing, Sherry Xu, Mark Staples, Thierry Rakotoarivelo, David Lo
- Abstract要約: コンテキストプライバシポリシ(CPP)の目的は、プライバシポリシを簡潔なスニペットに断片化し、アプリケーションのグラフィカルユーザインターフェース(GUI)内の対応するコンテキスト内でのみ表示することである。
本稿では,モバイルアプリケーションシナリオでCPPを初めて定式化し,モバイルアプリケーション用のCPPを自動生成するSeePrivacyという新しいマルチモーダルフレームワークを提案する。
人間の評価では、抽出されたプライバシーポリシーセグメントの77%が、検出されたコンテキストと適切に一致していると認識されている。
- 参考スコア(独自算出の注目度): 19.578130824867596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy policies have emerged as the predominant approach to conveying
privacy notices to mobile application users. In an effort to enhance both
readability and user engagement, the concept of contextual privacy policies
(CPPs) has been proposed by researchers. The aim of CPPs is to fragment privacy
policies into concise snippets, displaying them only within the corresponding
contexts within the application's graphical user interfaces (GUIs). In this
paper, we first formulate CPP in mobile application scenario, and then present
a novel multimodal framework, named SeePrivacy, specifically designed to
automatically generate CPPs for mobile applications. This method uniquely
integrates vision-based GUI understanding with privacy policy analysis,
achieving 0.88 precision and 0.90 recall to detect contexts, as well as 0.98
precision and 0.96 recall in extracting corresponding policy segments. A human
evaluation shows that 77% of the extracted privacy policy segments were
perceived as well-aligned with the detected contexts. These findings suggest
that SeePrivacy could serve as a significant tool for bolstering user
interaction with, and understanding of, privacy policies. Furthermore, our
solution has the potential to make privacy notices more accessible and
inclusive, thus appealing to a broader demographic. A demonstration of our work
can be accessed at https://cpp4app.github.io/SeePrivacy/
- Abstract(参考訳): プライバシーポリシーは、モバイルアプリケーションユーザーにプライバシー通知を伝えるための主要なアプローチとして現れてきた。
可読性とユーザエンゲージメントを両立させるために,コンテキストプライバシポリシ(CPP)の概念が研究者によって提案されている。
CPPの目的は、プライバシーポリシーを簡潔なスニペットに断片化し、アプリケーションのグラフィカルユーザインターフェイス(GUI)内の対応するコンテキスト内でのみ表示することである。
本稿では,モバイルアプリケーションシナリオでCPPを初めて定式化し,モバイルアプリケーション用のCPPを自動生成するSeePrivacyという新しいマルチモーダルフレームワークを提案する。
この方法は、視覚に基づくGUI理解とプライバシポリシ分析を一意に統合し、コンテキストを検出するために0.88の精度と0.90のリコール、対応するポリシーセグメントを抽出する0.98の精度と0.96のリコールを達成する。
人間による評価では、抽出されたプライバシーポリシーセグメントの77%が、検出されたコンテキストとよく一致していることがわかった。
これらの結果は、SeeePrivacyが、プライバシーポリシーとのユーザーインタラクションを強化し、理解するための重要なツールになり得ることを示唆している。
さらに、私たちのソリューションは、プライバシー通知をよりアクセスしやすく、包括的にする可能性を秘めています。
私たちの作業のデモはhttps://cpp4app.github.io/SeePrivacy/でアクセスできます。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - PolicyGPT: Automated Analysis of Privacy Policies with Large Language
Models [41.969546784168905]
実際に使う場合、ユーザーは慎重に読むのではなく、Agreeボタンを直接クリックする傾向がある。
このプラクティスは、プライバシーの漏洩や法的問題のリスクにユーザをさらけ出す。
近年,ChatGPT や GPT-4 などの大規模言語モデル (LLM) が出現し,テキスト解析の新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-09-19T01:22:42Z) - SeePrivacy: Automated Contextual Privacy Policy Generation for Mobile
Applications [21.186902172367173]
SeePrivacyは、モバイルアプリのコンテキストプライバシポリシを自動的に生成するように設計されている。
本手法は,モバイルGUI理解とプライバシポリシ文書解析を相乗的に組み合わせた手法である。
検索されたポリシーセグメントの96%は、そのコンテキストと正しく一致させることができる。
論文 参考訳(メタデータ) (2023-07-04T12:52:45Z) - Toward the Cure of Privacy Policy Reading Phobia: Automated Generation
of Privacy Nutrition Labels From Privacy Policies [19.180437130066323]
プライバシーポリシーからプライバシー栄養ラベルを自動的に生成できる最初のフレームワークを提案する。
Google Play App StoreのData Safety Reportに関する私たちの真実のアプリケーションに基づいて、当社のフレームワークは、サードパーティのデータ収集プラクティスの生成において、0.75F1スコアを達成しています。
また、市場における地平の真実と保護されたプライバシーの栄養ラベルの矛盾を分析し、我々のフレームワークは90.1%の未解決の問題を検出することができる。
論文 参考訳(メタデータ) (2023-06-19T13:33:44Z) - Is It a Trap? A Large-scale Empirical Study And Comprehensive Assessment
of Online Automated Privacy Policy Generators for Mobile Apps [15.181098379077344]
自動プライバシポリシジェネレータは、モバイルアプリのプライバシポリシを作成することができる。
プライバシーポリシーの約20.1%は、既存のAPPGによって生成される可能性がある。
アプリケーション開発者は、潜在的な落とし穴を避けるために、適切にAPPGを選択して使用する必要があります。
論文 参考訳(メタデータ) (2023-05-05T04:08:18Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Is Downloading this App Consistent with my Values? Conceptualizing a
Value-Centered Privacy Assistant [0.0]
データプライバシの決定は、ユーザ値の表現として理解できる、と提案する。
さらに,価値中心型プライバシアシスタント(VcPA)の開発を提案する。
論文 参考訳(メタデータ) (2021-06-23T15:08:58Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。