Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
- URL: http://arxiv.org/abs/2402.14648v3
- Date: Thu, 23 Jan 2025 10:21:52 GMT
- Title: Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
- Authors: Futa Waseda, Ching-Chun Chang, Isao Echizen,
- Abstract summary: Adversarial training often suffers from a robustness-accuracy trade-off, where achieving high robustness comes at the cost of accuracy.
We propose Asymmetric Representation-regularized Adversarial Training (ARAT)
ARAT incorporates asymmetric invariance loss with stop-gradient operation and a predictor to avoid gradient conflict, and a split-BatchNorm (BN) structure to resolve the mixture distribution problem.
- Score: 7.202931445597171
- License:
- Abstract: Adversarial training often suffers from a robustness-accuracy trade-off, where achieving high robustness comes at the cost of accuracy. One approach to mitigate this trade-off is leveraging invariance regularization, which encourages model invariance under adversarial perturbations; however, it still leads to accuracy loss. In this work, we closely analyze the challenges of using invariance regularization in adversarial training and understand how to address them. Our analysis identifies two key issues: (1) a ``gradient conflict" between invariance and classification objectives, leading to suboptimal convergence, and (2) the mixture distribution problem arising from diverged distributions between clean and adversarial inputs. To address these issues, we propose Asymmetric Representation-regularized Adversarial Training (ARAT), which incorporates asymmetric invariance loss with stop-gradient operation and a predictor to avoid gradient conflict, and a split-BatchNorm (BN) structure to resolve the mixture distribution problem. Our detailed analysis demonstrates that each component effectively addresses the identified issues, offering novel insights into adversarial defense. ARAT shows superiority over existing methods across various settings. Finally, we discuss the implications of our findings to knowledge distillation-based defenses, providing a new perspective on their relative successes.
Related papers
- Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training [43.766504246864045]
We propose a novel uncertainty-aware distributional adversarial training method.
Our approach achieves state-of-the-art adversarial robustness and maintains natural performance.
arXiv Detail & Related papers (2024-11-05T07:26:24Z) - Conflict-Aware Adversarial Training [29.804312958830636]
We argue that the weighted-average method does not provide the best tradeoff for the standard performance and adversarial robustness.
We propose a new trade-off paradigm for adversarial training with a conflict-aware factor for the convex combination of standard and adversarial loss, named textbfConflict-Aware Adrial Training(CA-AT)
arXiv Detail & Related papers (2024-10-21T23:44:03Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
adversarial examples can be crafted by adding imperceptible perturbations to legitimate documents.
This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs.
In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs.
arXiv Detail & Related papers (2023-12-16T05:38:39Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Adversarial Amendment is the Only Force Capable of Transforming an Enemy
into a Friend [29.172689524555015]
Adversarial attack is commonly regarded as a huge threat to neural networks because of misleading behavior.
This paper presents an opposite perspective: adversarial attacks can be harnessed to improve neural models if amended correctly.
arXiv Detail & Related papers (2023-05-18T07:13:02Z) - Learning Against Distributional Uncertainty: On the Trade-off Between
Robustness and Specificity [24.874664446700272]
This paper studies a new framework that unifies the three approaches and that addresses the two challenges mentioned above.
The properties (e.g., consistency and normalities), non-asymptotic properties (e.g., unbiasedness and error bound), and a Monte-Carlo-based solution method of the proposed model are studied.
arXiv Detail & Related papers (2023-01-31T11:33:18Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
Deep learning to inputs perturbations has raised serious questions about its use in safety-critical domains.
We propose a hybrid Langevin Monte Carlo training approach to mitigate this issue.
We show that our approach can mitigate the trade-off between state-of-the-art performance and robust robustness.
arXiv Detail & Related papers (2021-10-29T13:30:42Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
We provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features.
We precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach.
Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies.
arXiv Detail & Related papers (2020-02-24T19:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.