Learning Sample Reweighting for Accuracy and Adversarial Robustness
- URL: http://arxiv.org/abs/2210.11513v1
- Date: Thu, 20 Oct 2022 18:25:11 GMT
- Title: Learning Sample Reweighting for Accuracy and Adversarial Robustness
- Authors: Chester Holtz, Tsui-Wei Weng, Gal Mishne
- Abstract summary: We propose a novel adversarial training framework that learns to reweight the loss associated with individual training samples based on a notion of class-conditioned margin.
Our approach consistently improves both clean and robust accuracy compared to related methods and state-of-the-art baselines.
- Score: 15.591611864928659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been great interest in enhancing the robustness of neural network
classifiers to defend against adversarial perturbations through adversarial
training, while balancing the trade-off between robust accuracy and standard
accuracy. We propose a novel adversarial training framework that learns to
reweight the loss associated with individual training samples based on a notion
of class-conditioned margin, with the goal of improving robust generalization.
We formulate weighted adversarial training as a bilevel optimization problem
with the upper-level problem corresponding to learning a robust classifier, and
the lower-level problem corresponding to learning a parametric function that
maps from a sample's \textit{multi-class margin} to an importance weight.
Extensive experiments demonstrate that our approach consistently improves both
clean and robust accuracy compared to related methods and state-of-the-art
baselines.
Related papers
- Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
We propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions.
Our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes.
arXiv Detail & Related papers (2024-07-16T16:02:27Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
Two-player zero-sum paradigm of adversarial training has not engendered sufficient levels of robustness.
We show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on robustness.
A novel non-zero-sum bilevel formulation of adversarial training yields a framework that matches and in some cases outperforms state-of-the-art attacks.
arXiv Detail & Related papers (2023-06-19T16:00:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - Precise Tradeoffs in Adversarial Training for Linear Regression [55.764306209771405]
We provide a precise and comprehensive understanding of the role of adversarial training in the context of linear regression with Gaussian features.
We precisely characterize the standard/robust accuracy and the corresponding tradeoff achieved by a contemporary mini-max adversarial training approach.
Our theory for adversarial training algorithms also facilitates the rigorous study of how a variety of factors (size and quality of training data, model overparametrization etc.) affect the tradeoff between these two competing accuracies.
arXiv Detail & Related papers (2020-02-24T19:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.