Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality
- URL: http://arxiv.org/abs/2402.14679v1
- Date: Thu, 22 Feb 2024 16:32:08 GMT
- Title: Is Cognition and Action Consistent or Not: Investigating Large Language
Model's Personality
- Authors: Yiming Ai, Zhiwei He, Ziyin Zhang, Wenhong Zhu, Hongkun Hao, Kai Yu,
Lingjun Chen and Rui Wang
- Abstract summary: We investigate the reliability of Large Language Models (LLMs) in professing human-like personality traits through responses to personality questionnaires.
Our goal is to evaluate the consistency between LLMs' professed personality inclinations and their actual "behavior"
We propose hypotheses for the observed results based on psychological theories and metrics.
- Score: 12.162460438332152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we investigate the reliability of Large Language Models (LLMs)
in professing human-like personality traits through responses to personality
questionnaires. Our goal is to evaluate the consistency between LLMs' professed
personality inclinations and their actual "behavior", examining the extent to
which these models can emulate human-like personality patterns. Through a
comprehensive analysis of LLM outputs against established human benchmarks, we
seek to understand the cognition-action divergence in LLMs and propose
hypotheses for the observed results based on psychological theories and
metrics.
Related papers
- Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
Large Language Models (LLMs) are increasingly used in everyday life and research.
measuring the personality of a given LLM is currently a challenge.
This paper introduces the Language Model Linguistic Personality Assessment (LMLPA), a system designed to evaluate the linguistic personalities of LLMs.
arXiv Detail & Related papers (2024-10-23T07:48:51Z) - Exploring the Personality Traits of LLMs through Latent Features Steering [12.142248881876355]
We investigate how factors, such as cultural norms and environmental stressors, encoded within large language models (LLMs) shape their personality traits.
We propose a training-free approach to modify the model's behavior by extracting and steering latent features corresponding to factors within the model.
arXiv Detail & Related papers (2024-10-07T21:02:34Z) - Investigating Context Effects in Similarity Judgements in Large Language Models [6.421776078858197]
Large Language Models (LLMs) have revolutionised the capability of AI models in comprehending and generating natural language text.
We report an ongoing investigation on alignment of LLMs with human judgements affected by order bias.
arXiv Detail & Related papers (2024-08-20T10:26:02Z) - Do Language Models Enjoy Their Own Stories? Prompting Large Language Models for Automatic Story Evaluation [15.718288693929019]
Large Language Models (LLM) achieve state-of-the-art performance on many NLP tasks.
We study whether LLMs can be used as substitutes for human annotators.
We find that LLMs outperform current automatic measures for system-level evaluation but still struggle to provide satisfactory explanations.
arXiv Detail & Related papers (2024-05-22T15:56:52Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
We analyze the personality traits simulated by Llama2, GPT4, and Mixtral.
This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits.
arXiv Detail & Related papers (2024-01-31T13:45:25Z) - Personality Traits in Large Language Models [44.908741466152215]
Personality is a key factor determining the effectiveness of communication.
We present a comprehensive method for administering and validating personality tests on widely-used large language models.
We discuss application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.
arXiv Detail & Related papers (2023-07-01T00:58:51Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.