A Comparative Study of Large Language Models and Human Personality Traits
- URL: http://arxiv.org/abs/2505.14845v1
- Date: Thu, 01 May 2025 15:10:15 GMT
- Title: A Comparative Study of Large Language Models and Human Personality Traits
- Authors: Wang Jiaqi, Wang bo, Guo fa, Cheng cheng, Yang li,
- Abstract summary: Large Language Models (LLMs) have demonstrated human-like capabilities in language comprehension and generation.<n>This study investigates whether LLMs exhibit personality-like traits and how these traits compare with human personality.
- Score: 6.354326674890978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated human-like capabilities in language comprehension and generation, becoming active participants in social and cognitive domains. This study investigates whether LLMs exhibit personality-like traits and how these traits compare with human personality, focusing on the applicability of conventional personality assessment tools. A behavior-based approach was used across three empirical studies. Study 1 examined test-retest stability and found that LLMs show higher variability and are more input-sensitive than humans, lacking long-term stability. Based on this, we propose the Distributed Personality Framework, conceptualizing LLM traits as dynamic and input-driven. Study 2 analyzed cross-variant consistency in personality measures and found LLMs' responses were highly sensitive to item wording, showing low internal consistency compared to humans. Study 3 explored personality retention during role-playing, showing LLM traits are shaped by prompt and parameter settings. These findings suggest that LLMs express fluid, externally dependent personality patterns, offering insights for constructing LLM-specific personality frameworks and advancing human-AI interaction. This work contributes to responsible AI development and extends the boundaries of personality psychology in the age of intelligent systems.
Related papers
- Evaluating Personality Traits in Large Language Models: Insights from Psychological Questionnaires [3.6001840369062386]
This work applies psychological tools to Large Language Models in diverse scenarios to generate personality profiles.<n>Our findings reveal that LLMs exhibit unique traits, varying characteristics, and distinct personality profiles even within the same family of models.
arXiv Detail & Related papers (2025-02-07T16:12:52Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
Large Language Models (LLMs) are increasingly used in everyday life and research.
measuring the personality of a given LLM is currently a challenge.
This paper introduces the Language Model Linguistic Personality Assessment (LMLPA), a system designed to evaluate the linguistic personalities of LLMs.
arXiv Detail & Related papers (2024-10-23T07:48:51Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, a framework for better data construction and model tuning.<n>For insufficient data usage, we incorporate strategies such as Chain-of-Thought prompting and anti-induction.<n>For rigid behavior patterns, we design the tuning process and introduce automated DPO to enhance the specificity and dynamism of the models' personalities.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - P-React: Synthesizing Topic-Adaptive Reactions of Personality Traits via Mixture of Specialized LoRA Experts [34.374681921626205]
We propose P-React, a mixture of experts (MoE)-based personalized large language models.<n> Particularly, we integrate a Personality Loss (PSL) to better capture individual trait expressions.<n>To facilitate research in this field, we curate OCEAN-Chat, a high-quality, human-verified dataset.
arXiv Detail & Related papers (2024-06-18T12:25:13Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Is Self-knowledge and Action Consistent or Not: Investigating Large Language Model's Personality [11.660251022962141]
We investigate the validity of conventional personality questionnaires in capturing the human-like personality traits of Large Language Models (LLMs)<n>Our objective is to assess the congruence between the personality traits LLMs claim to possess and their demonstrated tendencies in real-world scenarios.
arXiv Detail & Related papers (2024-02-22T16:32:08Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
We analyze the personality traits simulated by Llama2, GPT4, and Mixtral.
This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits.
arXiv Detail & Related papers (2024-01-31T13:45:25Z) - Personality Traits in Large Language Models [42.31355340867784]
Personality is a key factor determining the effectiveness of communication.<n>We present a novel and comprehensive psychometrically valid and reliable methodology for administering and validating personality tests on widely-used large language models.<n>We discuss the application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.
arXiv Detail & Related papers (2023-07-01T00:58:51Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
This study aims to determine the reliability of applying personality assessments to Large Language Models.
Analysis of 2,500 settings per model, including GPT-3.5, GPT-4, Gemini-Pro, and LLaMA-3.1, reveals that various LLMs show consistency in responses to the Big Five Inventory.
arXiv Detail & Related papers (2023-05-31T15:03:28Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.