論文の概要: Adaptive time series forecasting with markovian variance switching
- arxiv url: http://arxiv.org/abs/2402.14684v1
- Date: Thu, 22 Feb 2024 16:40:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-23 14:33:41.381311
- Title: Adaptive time series forecasting with markovian variance switching
- Title(参考訳): マルコフ分散スイッチを用いた適応時系列予測
- Authors: Baptiste Ab\'el\`es, Joseph de Vilmarest, Olivier Wintemberger
- Abstract要約: 本稿では,オンライン学習理論に基づく分散を推定する新しい手法を提案する。
専門的なアグリゲーション手法を適用して、時間とともにばらつきを学習する。
本手法は, 誤特定に対して頑健であり, 従来の専門家アグリゲーションよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 1.2891210250935148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptive time series forecasting is essential for prediction under regime
changes. Several classical methods assume linear Gaussian state space model
(LGSSM) with variances constant in time. However, there are many real-world
processes that cannot be captured by such models. We consider a state-space
model with Markov switching variances. Such dynamical systems are usually
intractable because of their computational complexity increasing exponentially
with time; Variational Bayes (VB) techniques have been applied to this problem.
In this paper, we propose a new way of estimating variances based on online
learning theory; we adapt expert aggregation methods to learn the variances
over time. We apply the proposed method to synthetic data and to the problem of
electricity load forecasting. We show that this method is robust to
misspecification and outperforms traditional expert aggregation.
- Abstract(参考訳): 適応時系列予測は体制変化の予測に不可欠である。
いくつかの古典的手法では線形ガウス状態空間モデル (lgssm) を定時定数で仮定している。
しかし、そのようなモデルでは捉えられない現実世界のプロセスが数多く存在する。
マルコフスイッチング分散を持つ状態空間モデルを考える。
このような力学系は通常、その計算複雑性が時間とともに指数関数的に増加するため難解であり、この問題に変分ベイズ(VB)技術が適用されている。
本稿では,オンライン学習理論に基づいて分散を推定する新しい手法を提案する。
提案手法を合成データに適用し,電力負荷予測問題に適用する。
この手法は誤特定に対して頑健であり,従来のエキスパートアグリゲーションよりも優れていることを示す。
関連論文リスト
- Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
論文 参考訳(メタデータ) (2022-05-18T09:03:00Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
データから解釈可能な等価性を発見する方法について検討する。
具体的には、モデルのパラメータ共有方式に対する最適化問題として、この発見プロセスを定式化する。
また,ガウスデータの手法を理論的に解析し,研究された発見スキームとオラクルスキームの間の平均2乗ギャップを限定する。
論文 参考訳(メタデータ) (2022-04-07T17:59:19Z) - Adaptive Conformal Predictions for Time Series [0.0]
アダプティブ・コンフォーマル推論(ACI)は、一般的な依存関係を持つ時系列に対して適切な手順であると主張する。
本稿では,オンラインエキスパートアグリゲーションに基づくACIを適応的に構築するパラメータフリー手法であるAgACIを提案する。
実際のケーススタディとして、電力価格の予測を行います。
論文 参考訳(メタデータ) (2022-02-15T09:57:01Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - The temporal overfitting problem with applications in wind power curve
modeling [8.057262184815636]
本稿では,時間的過適合問題に対処する新しい手法を提案する。
本稿では,風力エネルギーのパワー曲線モデリングを対象とする。
論文 参考訳(メタデータ) (2020-12-02T17:39:57Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - Drift-Adjusted And Arbitrated Ensemble Framework For Time Series
Forecasting [0.491574468325115]
時系列データの複雑で進化的な性質のため、時系列予測は難しい問題である。
あらゆる時系列データに対して普遍的に有効な方法は存在しない。
そこで本研究では,そのような分布ドリフトを考慮した再重み付け手法を提案する。
論文 参考訳(メタデータ) (2020-03-16T10:21:37Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。