論文の概要: Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
- arxiv url: http://arxiv.org/abs/2205.08803v1
- Date: Wed, 18 May 2022 09:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-19 13:27:55.177443
- Title: Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
- Title(参考訳): 連続時間切替力学系のためのマルコフ連鎖モンテカルロ
- Authors: Lukas K\"ohs and Bastian Alt and Heinz Koeppl
- Abstract要約: マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
- 参考スコア(独自算出の注目度): 26.744964200606784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Switching dynamical systems are an expressive model class for the analysis of
time-series data. As in many fields within the natural and engineering
sciences, the systems under study typically evolve continuously in time, it is
natural to consider continuous-time model formulations consisting of switching
stochastic differential equations governed by an underlying Markov jump
process. Inference in these types of models is however notoriously difficult,
and tractable computational schemes are rare. In this work, we propose a novel
inference algorithm utilizing a Markov Chain Monte Carlo approach. The
presented Gibbs sampler allows to efficiently obtain samples from the exact
continuous-time posterior processes. Our framework naturally enables Bayesian
parameter estimation, and we also include an estimate for the diffusion
covariance, which is oftentimes assumed fixed in stochastic differential
equation models. We evaluate our framework under the modeling assumption and
compare it against an existing variational inference approach.
- Abstract(参考訳): 動的システムの切り替えは時系列データ解析のための表現力のあるモデルクラスである。
自然科学や工学の多くの分野と同様に、研究対象のシステムは時間とともに連続的に進化するが、マルコフジャンプ過程によって支配される確率微分方程式を切り替えることからなる連続時間モデル定式化を考えるのは自然である。
しかし、この種のモデルの推論は極めて困難であり、抽出可能な計算スキームは稀である。
本研究ではマルコフ・チェイン・モンテカルロ手法を用いた新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
我々のフレームワークは自然にベイズパラメータの推定を可能にし、確率微分方程式モデルでしばしば固定される拡散共分散の推定も含んでいる。
モデル化の前提の下でフレームワークを評価し,既存の変分推論手法と比較する。
関連論文リスト
- Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Logistic-beta processes for dependent random probabilities with beta marginals [58.91121576998588]
本稿では,ロジスティック・ベータプロセスと呼ばれる新しいプロセスを提案する。
空間や時間などの離散領域と連続領域の両方への依存をモデル化でき、相関カーネルを通じて柔軟な依存構造を持つ。
本研究は,非パラメトリック二分回帰と条件密度推定の例による効果をシミュレーション研究と妊娠結果応用の両方で説明する。
論文 参考訳(メタデータ) (2024-02-10T21:41:32Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
本稿では,基礎となる相互作用力学系をモデル化するために,グラフニューラルネットワークを用いた深部状態空間モデルを提案する。
予測分布はマルチモーダルであり、ガウス混合モデルの形をしており、ガウス成分のモーメントは決定論的モーメントマッチングルールによって計算できる。
我々のモーメントマッチングスキームはサンプルのない推論に利用でき、モンテカルロの代替案と比較してより効率的で安定した訓練がもたらされる。
論文 参考訳(メタデータ) (2023-05-02T20:30:23Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
非定常条件分布を時間とともにモデル化する新しい手法を提案する。
我々のモデルは、最先端のディープラーニングソリューションよりも定常的でない時系列に適応できることを示します。
論文 参考訳(メタデータ) (2022-09-17T21:40:02Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。