論文の概要: Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs
- arxiv url: http://arxiv.org/abs/2310.19347v3
- Date: Tue, 14 Nov 2023 06:55:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 17:47:13.068722
- Title: Improving Factual Consistency of Text Summarization by Adversarially
Decoupling Comprehension and Embellishment Abilities of LLMs
- Title(参考訳): LLMの理解と実装能力の相違によるテキスト要約の現実的整合性の改善
- Authors: Huawen Feng, Yan Fan, Xiong Liu, Ting-En Lin, Zekun Yao, Yuchuan Wu,
Fei Huang, Yongbin Li, Qianli Ma
- Abstract要約: 大規模言語モデル(LLM)は、本来の記事と現実的に矛盾する要約を生成する。
これらの幻覚は、従来の方法による検出が困難である。
LLM(DECENT)の能力を阻害する逆デカップリング法を提案する。
- 参考スコア(独自算出の注目度): 67.56087611675606
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the recent progress in text summarization made by large language
models (LLMs), they often generate summaries that are factually inconsistent
with original articles, known as "hallucinations" in text generation. Unlike
previous small models (e.g., BART, T5), current LLMs make fewer silly mistakes
but more sophisticated ones, such as imposing cause and effect, adding false
details, overgeneralizing, etc. These hallucinations are challenging to detect
through traditional methods, which poses great challenges for improving the
factual consistency of text summarization. In this paper, we propose an
adversarially DEcoupling method to disentangle the Comprehension and
EmbellishmeNT abilities of LLMs (DECENT). Furthermore, we adopt a probing-based
efficient training to cover the shortage of sensitivity for true and false in
the training process of LLMs. In this way, LLMs are less confused about
embellishing and understanding; thus, they can execute the instructions more
accurately and have enhanced abilities to distinguish hallucinations.
Experimental results show that DECENT significantly improves the reliability of
text summarization based on LLMs.
- Abstract(参考訳): 大規模言語モデル(llm)によるテキスト要約の最近の進歩にもかかわらず、それらはテキスト生成において「幻覚」として知られる元の記事と事実上矛盾する要約を生成することが多い。
従来の小さなモデル(例えばBART、T5)とは異なり、現在のLLMは愚かなミスを少なくするが、原因や効果を示唆する、誤った詳細を追加する、過度に一般化するなど、より洗練されたものを作る。
これらの幻覚は従来の手法による検出が困難であり、テキスト要約の事実整合性を改善する上で大きな課題となる。
本稿では,LLM(DECENT)の包括的・包括的NT能力を阻害する逆デカップリング手法を提案する。
さらに, LLMの学習過程において, 真偽に対する感度の不足を補うために, 探索に基づく効率的な訓練を取り入れた。
このように、LLMは実装や理解について混乱しにくく、より正確に命令を実行でき、幻覚を識別する能力を高めることができる。
実験の結果, llmsに基づくテキスト要約の信頼性が有意に向上した。
関連論文リスト
- Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
幻覚に対処するための反復モデルレベルのコントラスト学習(Iter-AHMCL)
本稿では,幻覚に対処するイテレーティブモデルレベルのコントラスト学習(Iter-AHMCL)を提案する。
論文 参考訳(メタデータ) (2024-10-16T00:15:40Z) - FLAME: Factuality-Aware Alignment for Large Language Models [86.76336610282401]
従来のアライメントプロセスでは,大規模言語モデル(LLM)の事実精度が向上しない。
両段階の幻覚につながる要因は,教師付き微調整(SFT)と強化学習(RL)である。
直接選好最適化により,事実認識型SFTと事実認識型RLで構成された事実認識型アライメントを提案する。
論文 参考訳(メタデータ) (2024-05-02T17:54:54Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Is Factuality Enhancement a Free Lunch For LLMs? Better Factuality Can Lead to Worse Context-Faithfulness [39.74642729786543]
我々は、現在の事実性向上手法は、大規模言語モデル(LLM)の文脈忠実性を著しく損なう可能性があると論じている。
実験の結果、これらの手法は事実の正確性に矛盾する改善をもたらす可能性があるが、文脈不信感の低下も引き起こすことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-30T02:08:28Z) - "Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing [10.20632187568563]
幻覚は現代大言語モデル(LLM)の最も脆弱な側面として現れてきた。
本稿では,LCMの幻覚を避けることを目的としたSCAプロンプトについて紹介する。
本稿では,21のLLMに対するプロンプトの形式性,可読性,具体性について,言語的ニュアンスを詳細に分析する。
与えられたプロンプトの最も理解しやすいパラフレーズを識別する最適なパラフレーズ化手法を提案する。
論文 参考訳(メタデータ) (2024-03-27T19:45:09Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
本稿では,人間が理解し易いが,理解し難い文を含むFaLlacy Understanding Benchmark (FLUB)を提案する。
具体的には、FLUBが焦点を絞ったcunningテキストは、主に、実際のインターネット環境から収集されたトリッキーでユーモラスで誤解を招くテキストで構成されている。
FLUBに基づいて,複数の代表および先進LLMの性能について検討する。
論文 参考訳(メタデータ) (2024-02-16T22:12:53Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。