Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
- URL: http://arxiv.org/abs/2402.14781v3
- Date: Wed, 23 Apr 2025 11:48:41 GMT
- Title: Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
- Authors: Christian Toth, Christian Knoll, Franz Pernkopf, Robert Peharz,
- Abstract summary: We study the use of uncertainty in causal inference over all causal models.<n>We decompose structure marginalisation into the marginalisation over (i) causal orders and (ii) directed acyclic graphs (DAGs) given an order.<n>Our method outperforms state-of-the-art in structure learning on simulated non-linear additive noise benchmarks.
- Score: 16.682775063684907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The traditional two-stage approach to causal inference first identifies a single causal model (or equivalence class of models), which is then used to answer causal queries. However, this neglects any epistemic model uncertainty. In contrast, Bayesian causal inference does incorporate epistemic uncertainty into query estimates via Bayesian marginalisation (posterior averaging) over all causal models. While principled, this marginalisation over entire causal models, i.e., both causal structures (graphs) and mechanisms, poses a tremendous computational challenge. In this work, we address this challenge by decomposing structure marginalisation into the marginalisation over (i) causal orders and (ii) directed acyclic graphs (DAGs) given an order. We can marginalise the latter in closed form by limiting the number of parents per variable and utilising Gaussian processes to model mechanisms. To marginalise over orders, we use a sampling-based approximation, for which we devise a novel auto-regressive distribution over causal orders (ARCO). Our method outperforms state-of-the-art in structure learning on simulated non-linear additive noise benchmarks, and yields competitive results on real-world data. Furthermore, we can accurately infer interventional distributions and average causal effects.
Related papers
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation.
We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions.
arXiv Detail & Related papers (2024-11-21T10:37:57Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
We consider the problem of the Bayesian estimation of the effects of hypothetical interventions in the Gaussian Process Network model.
We detail how to perform causal inference on GPNs by simulating the effect of an intervention across the whole network and propagating the effect of the intervention on downstream variables.
We extend both frameworks beyond the case of a known causal graph, incorporating uncertainty about the causal structure via Markov chain Monte Carlo methods.
arXiv Detail & Related papers (2024-02-01T14:39:59Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
Causal representation learning argues that factors of variation in a dataset are, in fact, causally related.
We propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model.
arXiv Detail & Related papers (2023-07-11T18:12:05Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Causal Autoregressive Flows [4.731404257629232]
We highlight an intrinsic correspondence between a simple family of autoregressive normalizing flows and identifiable causal models.
We exploit the fact that autoregressive flow architectures define an ordering over variables, analogous to a causal ordering, to show that they are well-suited to performing a range of causal inference tasks.
arXiv Detail & Related papers (2020-11-04T13:17:35Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.