Link Prediction under Heterophily: A Physics-Inspired Graph Neural
Network Approach
- URL: http://arxiv.org/abs/2402.14802v1
- Date: Thu, 22 Feb 2024 18:56:31 GMT
- Title: Link Prediction under Heterophily: A Physics-Inspired Graph Neural
Network Approach
- Authors: Andrea Giuseppe Di Francesco, Francesco Caso, Maria Sofia Bucarelli
and Fabrizio Silvestri
- Abstract summary: We introduce GRAFF-LP, an extension of GRAFF to link prediction.
We evaluate its efficacy within a recent collection of heterophilic graphs.
- Score: 5.187216033152917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past years, Graph Neural Networks (GNNs) have become the `de facto'
standard in various deep learning domains, thanks to their flexibility in
modeling real-world phenomena represented as graphs. However, the
message-passing mechanism of GNNs faces challenges in learnability and
expressivity, hindering high performance on heterophilic graphs, where adjacent
nodes frequently have different labels. Most existing solutions addressing
these challenges are primarily confined to specific benchmarks focused on node
classification tasks. This narrow focus restricts the potential impact that
link prediction under heterophily could offer in several applications,
including recommender systems. For example, in social networks, two users may
be connected for some latent reason, making it challenging to predict such
connections in advance. Physics-Inspired GNNs such as GRAFF provided a
significant contribution to enhance node classification performance under
heterophily, thanks to the adoption of physics biases in the message-passing.
Drawing inspiration from these findings, we advocate that the methodology
employed by GRAFF can improve link prediction performance as well. To further
explore this hypothesis, we introduce GRAFF-LP, an extension of GRAFF to link
prediction. We evaluate its efficacy within a recent collection of heterophilic
graphs, establishing a new benchmark for link prediction under heterophily. Our
approach surpasses previous methods, in most of the datasets, showcasing a
strong flexibility in different contexts, and achieving relative AUROC
improvements of up to 26.7%.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
We introduce PROXI, which leverages proximity information of node pairs in both graph and attribute spaces.
Standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models.
We show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - On the Impact of Feature Heterophily on Link Prediction with Graph Neural Networks [12.26334940017605]
Heterophily, or the tendency of connected nodes in networks to have different class labels or dissimilar features, has been identified as challenging for many Graph Neural Network (GNN) models.
We focus on the link prediction task and systematically analyze the impact of heterophily in node features on GNN performance.
arXiv Detail & Related papers (2024-09-26T02:19:48Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Design Your Own Universe: A Physics-Informed Agnostic Method for Enhancing Graph Neural Networks [34.16727363891593]
We propose a model-agnostic enhancement framework for Graph Neural Networks (GNNs)
This framework enriches the graph structure by introducing additional nodes and rewiring connections with both positive and negative weights.
We theoretically verify that GNNs enhanced through our approach can effectively circumvent the over-smoothing issue and exhibit robustness against over-squashing.
Empirical validations on benchmarks for homophilic, heterophilic graphs, and long-term graph datasets show that GNNs enhanced by our method significantly outperform their original counterparts.
arXiv Detail & Related papers (2024-01-26T00:47:43Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
We introduce AMUD, which quantifies the relationship between node profiles and topology from a statistical perspective.
We also propose ADPA as a new directed graph learning paradigm for AMUD.
arXiv Detail & Related papers (2023-12-07T07:54:11Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [86.87385758192566]
Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories.
We propose a novel GNN architecture whereby the emphforward pass explicitly depends on emphboth positive (as is typical) and negative (unique to our approach) edges.
This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function that favors separation of positive and negative samples.
arXiv Detail & Related papers (2023-10-14T07:02:54Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
A number of real-world graphs are heterophilic, and this leads to much lower classification accuracy using standard GNNs.
We design a novel GNN which is effective for both heterophilic and homophilic graphs.
We evaluate our algorithm on real-world graphs containing thousands to millions of nodes and show that we achieve state-of-the-art results.
arXiv Detail & Related papers (2023-05-28T09:38:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - A critical look at the evaluation of GNNs under heterophily: Are we
really making progress? [39.62589602648429]
It is often believed that standard Graph Neural Networks (GNNs) only work well for homophilous graphs.
We show that standard datasets used for evaluating heterophily-specific models have serious drawbacks.
We propose a set of heterophilous graphs of varying properties that we believe can serve as a better benchmark for evaluating the performance of GNNs under heterophily.
arXiv Detail & Related papers (2023-02-22T20:32:59Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Learning heterophilious edge to drop: A general framework for boosting
graph neural networks [19.004710957882402]
This work aims at mitigating the negative impacts of heterophily by optimizing graph structure for the first time.
We propose a structure learning method called LHE to identify heterophilious edges to drop.
Experiments demonstrate the remarkable performance improvement of GNNs with emphLHE on multiple datasets across full spectrum of homophily level.
arXiv Detail & Related papers (2022-05-23T14:07:29Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.