論文の概要: Text Diffusion with Reinforced Conditioning
- arxiv url: http://arxiv.org/abs/2402.14843v1
- Date: Mon, 19 Feb 2024 09:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 19:39:31.175126
- Title: Text Diffusion with Reinforced Conditioning
- Title(参考訳): 強化コンディショニングによるテキスト拡散
- Authors: Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang,
Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang
- Abstract要約: 本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
そこで本研究では, TRECと呼ばれる新しいテキスト拡散モデルを提案する。
- 参考スコア(独自算出の注目度): 92.17397504834825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated exceptional capability in generating
high-quality images, videos, and audio. Due to their adaptiveness in iterative
refinement, they provide a strong potential for achieving better
non-autoregressive sequence generation. However, existing text diffusion models
still fall short in their performance due to a challenge in handling the
discreteness of language. This paper thoroughly analyzes text diffusion models
and uncovers two significant limitations: degradation of self-conditioning
during training and misalignment between training and sampling. Motivated by
our findings, we propose a novel Text Diffusion model called TREC, which
mitigates the degradation with Reinforced Conditioning and the misalignment by
Time-Aware Variance Scaling. Our extensive experiments demonstrate the
competitiveness of TREC against autoregressive, non-autoregressive, and
diffusion baselines. Moreover, qualitative analysis shows its advanced ability
to fully utilize the diffusion process in refining samples.
- Abstract(参考訳): 拡散モデルは高品質な画像、ビデオ、オーディオを生成するのに異常な能力を示した。
反復的洗練における適応性のため、より優れた非自己回帰的シーケンス生成を実現する強力なポテンシャルを提供する。
しかし、既存のテキスト拡散モデルは、言語の離散性を扱うことの難しさから、まだ性能が劣っている。
本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
本研究の動機は,強化コンディショニングによる劣化を緩和し,時間認識分散スケーリングによる誤用を緩和する,trecと呼ばれる新しいテキスト拡散モデルを提案することにある。
本研究では,TRECの自己回帰的,非自己回帰的,拡散的ベースラインに対する競争性を示す。
さらに, 定性解析により, 試料の拡散過程を十分に活用する能力が得られた。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Table-to-Text Generation with Pretrained Diffusion Models [0.0]
拡散モデルは様々なテキスト生成タスクにまたがって最先端のパフォーマンスを実現する上で大きな可能性を示している。
タスクに拡散モデルを適用し,詳細な解析を行うことにより,表から表への変換問題へのそれらの適用について検討する。
この結果から,表-テキスト領域において拡散モデルが同等の結果を得ることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-10T15:36:53Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
我々は拡散モデルを再検討し、全体論的文脈モデリングと並列復号化の能力を強調した。
本稿では,分割BERTを用いた新しいアーキテクチャLaDiCを導入し,キャプション専用のラテント空間を創出する。
LaDiCは、38.2 BLEU@4と126.2 CIDErのMSデータセット上で拡散ベースのメソッドの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-16T17:47:16Z) - Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models [100.53662473219806]
Diffusion-of-Thought (DoT) は、拡散モデルとChain-of-Thoughtを統合する新しいアプローチである。
DoTは、拡散言語モデルを通じて、時間とともに推論ステップが拡散することを可能にする。
本研究は,多桁乗算,論理学,小学校数学におけるDoTの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-12T16:23:28Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
テキストからテキストへの自己条件付きSimplex Diffusionは、新しい形式のセルフコンディショニングを採用し、学習された埋め込み空間ではなく、ロジット単純空間に拡散プロセスを適用する。
我々は、TESSが最先端の非自己回帰モデルより優れており、性能の低下を最小限に抑えた拡散ステップを少なくし、事前訓練された自己回帰列列列列モデルと競合することを示した。
論文 参考訳(メタデータ) (2023-05-15T06:33:45Z) - Empowering Diffusion Models on the Embedding Space for Text Generation [38.664533078347304]
埋め込み空間とデノナイジングモデルの両方で直面する最適化課題について検討する。
データ分散は埋め込みにおいて学習可能であり、埋め込み空間の崩壊と不安定なトレーニングにつながる可能性がある。
以上の解析に基づいて,Transformerに基づく埋め込み拡散モデルであるDifformerを提案する。
論文 参考訳(メタデータ) (2022-12-19T12:44:25Z) - Self-conditioned Embedding Diffusion for Text Generation [28.342735885752493]
自己条件埋め込み拡散(Self-conditioned Embedding Diffusion)は、トークンの埋め込みで動作する連続拡散機構である。
テキスト拡散モデルでは,標準自己回帰言語モデルに匹敵するサンプルを生成する。
論文 参考訳(メタデータ) (2022-11-08T13:30:27Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。