論文の概要: Self-conditioned Embedding Diffusion for Text Generation
- arxiv url: http://arxiv.org/abs/2211.04236v1
- Date: Tue, 8 Nov 2022 13:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 15:27:44.282952
- Title: Self-conditioned Embedding Diffusion for Text Generation
- Title(参考訳): テキスト生成のための自己条件埋め込み拡散
- Authors: Robin Strudel, Corentin Tallec, Florent Altch\'e, Yilun Du, Yaroslav
Ganin, Arthur Mensch, Will Grathwohl, Nikolay Savinov, Sander Dieleman,
Laurent Sifre, R\'emi Leblond
- Abstract要約: 自己条件埋め込み拡散(Self-conditioned Embedding Diffusion)は、トークンの埋め込みで動作する連続拡散機構である。
テキスト拡散モデルでは,標準自己回帰言語モデルに匹敵するサンプルを生成する。
- 参考スコア(独自算出の注目度): 28.342735885752493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can continuous diffusion models bring the same performance breakthrough on
natural language they did for image generation? To circumvent the discrete
nature of text data, we can simply project tokens in a continuous space of
embeddings, as is standard in language modeling. We propose Self-conditioned
Embedding Diffusion, a continuous diffusion mechanism that operates on token
embeddings and allows to learn flexible and scalable diffusion models for both
conditional and unconditional text generation. Through qualitative and
quantitative evaluation, we show that our text diffusion models generate
samples comparable with those produced by standard autoregressive language
models - while being in theory more efficient on accelerator hardware at
inference time. Our work paves the way for scaling up diffusion models for
text, similarly to autoregressive models, and for improving performance with
recent refinements to continuous diffusion.
- Abstract(参考訳): 連続拡散モデルは、画像生成のために行った自然言語に同じパフォーマンスのブレークスルーをもたらすことができるか?
テキストデータの離散的な性質を回避するために、言語モデリングの標準である埋め込みの連続的な空間にトークンを投影するだけでよい。
本研究では,トークン埋め込みに基づく連続拡散機構である自己条件埋め込み拡散を提案し,条件付きテキスト生成と無条件テキスト生成の両方に対して柔軟かつスケーラブルな拡散モデルを学習する。
定性的かつ定量的な評価を通じて、我々のテキスト拡散モデルが標準自己回帰言語モデルに匹敵するサンプルを生成する一方で、理論上は推論時にアクセラレータハードウェアでより効率的であることを示す。
我々の研究は、自動回帰モデルと同様に、テキストの拡散モデルをスケールアップする方法を開拓し、最近の改良によって連続拡散への性能向上を図っている。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation? [10.72249123249003]
我々は拡散モデルを再検討し、全体論的文脈モデリングと並列復号化の能力を強調した。
本稿では,分割BERTを用いた新しいアーキテクチャLaDiCを導入し,キャプション専用のラテント空間を創出する。
LaDiCは、38.2 BLEU@4と126.2 CIDErのMSデータセット上で拡散ベースのメソッドの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-16T17:47:16Z) - Text Diffusion with Reinforced Conditioning [92.17397504834825]
本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
そこで本研究では, TRECと呼ばれる新しいテキスト拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T09:24:02Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
本稿では,潜在意味の拡散と自己回帰生成を組み合わせ,流動的なテキストを生成するモデルであるPLANNERを提案する。
意味生成, テキスト補完, 要約の結果は, 高品質な長文を生成する上での有効性を示す。
論文 参考訳(メタデータ) (2023-06-05T01:36:39Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
テキストからテキストへの自己条件付きSimplex Diffusionは、新しい形式のセルフコンディショニングを採用し、学習された埋め込み空間ではなく、ロジット単純空間に拡散プロセスを適用する。
我々は、TESSが最先端の非自己回帰モデルより優れており、性能の低下を最小限に抑えた拡散ステップを少なくし、事前訓練された自己回帰列列列列モデルと競合することを示した。
論文 参考訳(メタデータ) (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LMは言語モデリングのための新しい拡散モデルであり、言語の言語的特徴に触発されている。
具体的には,テキストデータのノイズを改善するために,戦略的ソフトマスキングによってテキストに劣化を加える言語情報処理を設計する。
我々は,我々のMasked-Diffuse LMが,高効率の最先端拡散モデルよりも優れた生成品質を達成できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:58:42Z) - A Reparameterized Discrete Diffusion Model for Text Generation [39.0145272152805]
本研究は, 離散拡散確率モデルと自然言語生成への応用に関する研究である。
離散拡散過程からサンプリングの代替的かつ等価な定式化を導出する。
本研究では,既存の拡散モデルに対して,テキスト生成能力を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-02-11T16:26:57Z) - Latent Diffusion for Language Generation [26.620353485679892]
言語への拡散を適応しようとする最近の試みは、既存の言語モデルの代替として拡散を提示している。
我々は,エンコーダ-デコーダ言語モデルを用いて,高品質なオートエンコーダを効率的に学習できることを実証した。
非条件, クラス条件, シーケンス・ツー・シーケンス言語生成に対する提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-12-19T13:57:06Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERTは離散拡散モデルに基づく新しい生成マスク付き言語モデルである。
本稿では,各ステップに付加される雑音の度合いを制御する前方拡散プロセスのための新しいノイズスケジュールを提案する。
非条件テキスト生成の実験では、DiffusionBERTは既存のテキスト拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-28T03:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。