Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning
- URL: http://arxiv.org/abs/2402.14856v2
- Date: Mon, 3 Jun 2024 13:53:01 GMT
- Title: Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning
- Authors: Philipp Mondorf, Barbara Plank,
- Abstract summary: We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
- Score: 25.732397636695882
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deductive reasoning plays a pivotal role in the formulation of sound and cohesive arguments. It allows individuals to draw conclusions that logically follow, given the truth value of the information provided. Recent progress in the domain of large language models (LLMs) has showcased their capability in executing deductive reasoning tasks. Nonetheless, a significant portion of research primarily assesses the accuracy of LLMs in solving such tasks, often overlooking a deeper analysis of their reasoning behavior. In this study, we draw upon principles from cognitive psychology to examine inferential strategies employed by LLMs, through a detailed evaluation of their responses to propositional logic problems. Our findings indicate that LLMs display reasoning patterns akin to those observed in humans, including strategies like $\textit{supposition following}$ or $\textit{chain construction}$. Moreover, our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning, with more advanced models tending to adopt strategies more frequently than less sophisticated ones. Importantly, we assert that a model's accuracy, that is the correctness of its final conclusion, does not necessarily reflect the validity of its reasoning process. This distinction underscores the necessity for more nuanced evaluation procedures in the field.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Logical Reasoning in Large Language Models: A Survey [17.06712393613964]
This survey synthesizes recent advancements in logical reasoning in large language models (LLMs)
It outlines the scope of logical reasoning in LLMs, its theoretical foundations, and the benchmarks used to evaluate reasoning proficiency.
The review concludes with future directions, emphasizing the need for further exploration to strengthen logical reasoning in AI systems.
arXiv Detail & Related papers (2025-02-13T09:19:14Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
We introduce JustLogic, a synthetically generated deductive reasoning benchmark for rigorous evaluation of Large Language Models.
JustLogic is highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures.
Our experimental results reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average.
arXiv Detail & Related papers (2025-01-24T15:49:10Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
We consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology.
We investigate the effects of chain-of-thought reasoning, in-context learning, and supervised fine-tuning on syllogistic reasoning.
Our results suggest that the behavior of pre-trained LLMs can be explained by cognitive science.
arXiv Detail & Related papers (2024-06-17T08:59:04Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.
In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.
These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models -- A Survey [25.732397636695882]
Large language models (LLMs) have recently shown impressive performance on tasks involving reasoning.
Despite these successes, the depth of LLMs' reasoning abilities remains uncertain.
arXiv Detail & Related papers (2024-04-02T11:46:31Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.