APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
- URL: http://arxiv.org/abs/2402.14866v2
- Date: Tue, 16 Apr 2024 03:18:38 GMT
- Title: APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
- Authors: Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, Hao Yu,
- Abstract summary: We propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for Large Language Models.
We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction.
Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity.
- Score: 12.006605064782567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
Related papers
- First-Order Error Matters: Accurate Compensation for Quantized Large Language Models [32.69069234109942]
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs)<n>Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error.<n>We propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation.
arXiv Detail & Related papers (2025-07-15T06:18:46Z) - DL-QAT: Weight-Decomposed Low-Rank Quantization-Aware Training for Large Language Models [11.216745641229917]
Post-training Quantization (PTQ) is a popular technique, but it often faces challenges at low-bit levels.
Quantization-aware Training (QAT) can alleviate this problem, but it requires significantly more computational resources.
We introduce Weight-Decomposed Low-Rank Quantization-Aware Training (DL-QAT), which merges the advantages of QAT while training only less than 1% of the total parameters.
arXiv Detail & Related papers (2025-04-12T13:57:02Z) - Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression [55.323397702682506]
Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining.
We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery.
arXiv Detail & Related papers (2025-04-10T02:19:03Z) - PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization.
We propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time.
Experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization.
arXiv Detail & Related papers (2025-02-18T08:04:58Z) - GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
gradient-aware weight quantization (GWQ) is the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers.
GWQ retains the corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format.
In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods.
arXiv Detail & Related papers (2024-10-30T11:16:04Z) - TesseraQ: Ultra Low-Bit LLM Post-Training Quantization with Block Reconstruction [20.903193906931687]
Post-training quantization (PTQ) is becoming the de facto method to reduce the memory footprint and improve the inference throughput of large language models (LLMs)
We propose TesseraQ, a new state-of-the-art PTQ technique, to quantize the weights of LLMs to ultra-low bits.
We demonstrate that TesseraQ can be seamlessly integrated with existing scaling or clipping-based PTQ algorithms.
arXiv Detail & Related papers (2024-10-24T19:06:51Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.
We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.
EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization [62.15918574997175]
It is known that language models contain outlier channels whose values on average are orders of magnitude higher than other channels.
We propose a strategy which regularizes a layer's inputs via quantization-aware training (QAT) and its outputs via activation kurtosis regularization.
We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights.
arXiv Detail & Related papers (2024-04-04T17:25:30Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its compression efficiency and cost-effectiveness in the context of training.
Existing PTQ methods for Large-scale Language Models (LLMs) limit the optimization scope to scaling transformations between pre- and post-quantization weights.
In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant)
arXiv Detail & Related papers (2024-03-19T08:40:21Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
We propose L4Q, a method that integrates Quantization-Aware Training (QAT) with Low-Rank Adaptation (LoRA) to effectively reduce quantization error.
By employing a memory-optimized layer design, L4Q significantly reduces QAT's memory overhead while producing fully-quantized weights.
arXiv Detail & Related papers (2024-02-07T14:35:05Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization [12.655230451207956]
This paper focuses on post-training quantization (PTQ) in Large Language Models (LLMs)
We present two innovative techniques: activation-quantization-aware scaling (AQAS) and sequence-length-aware calibration (SLAC)
We demonstrate that our techniques significantly boost task accuracies to levels comparable with full-precision models.
arXiv Detail & Related papers (2023-11-09T06:19:51Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
We introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision.
Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations.
Our simple and effective approach makes it more practical for real-world applications.
arXiv Detail & Related papers (2023-09-06T06:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.