論文の概要: Deep Coupling Network For Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2402.15134v1
- Date: Fri, 23 Feb 2024 06:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 15:30:31.530643
- Title: Deep Coupling Network For Multivariate Time Series Forecasting
- Title(参考訳): 多変量時系列予測のための深結合ネットワーク
- Authors: Kun Yi, Qi Zhang, Hui He, Kaize Shi, Liang Hu, Ning An, Zhendong Niu
- Abstract要約: 我々は,MTS予測のための新しいディープカップリングネットワーク,DeepCNを提案する。
提案するDeepCNは,最先端のベースラインに比べて優れた性能を実現する。
- 参考スコア(独自算出の注目度): 24.01637416183444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series (MTS) forecasting is crucial in many real-world
applications. To achieve accurate MTS forecasting, it is essential to
simultaneously consider both intra- and inter-series relationships among time
series data. However, previous work has typically modeled intra- and
inter-series relationships separately and has disregarded multi-order
interactions present within and between time series data, which can seriously
degrade forecasting accuracy. In this paper, we reexamine intra- and
inter-series relationships from the perspective of mutual information and
accordingly construct a comprehensive relationship learning mechanism tailored
to simultaneously capture the intricate multi-order intra- and inter-series
couplings. Based on the mechanism, we propose a novel deep coupling network for
MTS forecasting, named DeepCN, which consists of a coupling mechanism dedicated
to explicitly exploring the multi-order intra- and inter-series relationships
among time series data concurrently, a coupled variable representation module
aimed at encoding diverse variable patterns, and an inference module
facilitating predictions through one forward step. Extensive experiments
conducted on seven real-world datasets demonstrate that our proposed DeepCN
achieves superior performance compared with the state-of-the-art baselines.
- Abstract(参考訳): 多変量時系列(mts)予測は多くの実世界のアプリケーションで不可欠である。
正確なmts予測を実現するためには,時系列データ間の時系列間関係を同時に考慮する必要がある。
しかし、従来の研究はシリーズ内関係とシリーズ間関係を別々にモデル化しており、時系列データ内および時系列データ間の多重順序相互作用を無視しており、予測精度を著しく低下させる可能性がある。
本稿では,相互情報の観点から,系列間関係を再検討し,複雑な多階間結合と系列間結合を同時に捉えるように調整した包括的関係学習機構を構築する。
この機構に基づき,時系列データ間の多階間および系列間関係を明示的に探索する結合機構と,多様な可変パターンの符号化を目的とした結合型変数表現モジュールと,1つのフォワードステップで予測を容易にする推論モジュールとからなる,mts予測のための新しい深結合ネットワークであるdeepcnを提案する。
7つの実世界のデータセットで広範な実験を行った結果、deepcnは最先端のベースラインよりも優れた性能を実現していることが分かった。
関連論文リスト
- Multi-Knowledge Fusion Network for Time Series Representation Learning [2.368662284133926]
MTSデータ内の関係構造の暗黙的な知識と事前知識を組み合わせたハイブリッドアーキテクチャを提案する。
提案アーキテクチャは、複数のベンチマークデータセットに対して有望な結果を示し、最先端の予測手法をかなりの差で上回っている。
論文 参考訳(メタデータ) (2024-08-22T14:18:16Z) - Multi-Source Knowledge-Based Hybrid Neural Framework for Time Series Representation Learning [2.368662284133926]
提案したハイブリッドアーキテクチャは、ドメイン固有の知識とMSSデータに基づく関係構造の暗黙的な知識を組み合わせることで制限に対処する。
このアーキテクチャは、複数のベンチマークデータセットで有望な結果を示し、最先端の予測方法よりも優れています。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate
Time Series Forecasting [18.192600104502628]
時系列データはしばしば、シリーズ内およびシリーズ間相関を示す。
MSGNetの有効性を示すために、複数の実世界のデータセットで大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-12-31T08:23:24Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
本研究は時系列予測のためのニューラルネットワークアーキテクチャを提案する。
Recurrent Graph Evolution Neural Network (ReGENN) と名付けた。
多数のアンサンブル法と古典統計法との比較を行った。
論文 参考訳(メタデータ) (2020-08-28T20:10:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。