論文の概要: On the Duality Between Sharpness-Aware Minimization and Adversarial Training
- arxiv url: http://arxiv.org/abs/2402.15152v2
- Date: Wed, 5 Jun 2024 08:39:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 01:01:43.444227
- Title: On the Duality Between Sharpness-Aware Minimization and Adversarial Training
- Title(参考訳): シャープネスを意識した最小化と対人訓練の両立について
- Authors: Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, Zeming Wei,
- Abstract要約: 対戦訓練(AT)は、敵の攻撃に対する最も効果的な防御の1つだが、必然的にクリーンな精度が低下している。
サンプルを摂動させる代わりに、SAM(Sharpness-Aware Minimization)はトレーニング中にモデルの重量を摂動させ、より平坦なロスランドスケープを見つける。
SAMのみを用いることで、敵の堅牢性を向上させることができる。
- 参考スコア(独自算出の注目度): 14.863336218063646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial Training (AT), which adversarially perturb the input samples during training, has been acknowledged as one of the most effective defenses against adversarial attacks, yet suffers from inevitably decreased clean accuracy. Instead of perturbing the samples, Sharpness-Aware Minimization (SAM) perturbs the model weights during training to find a more flat loss landscape and improve generalization. However, as SAM is designed for better clean accuracy, its effectiveness in enhancing adversarial robustness remains unexplored. In this work, considering the duality between SAM and AT, we investigate the adversarial robustness derived from SAM. Intriguingly, we find that using SAM alone can improve adversarial robustness. To understand this unexpected property of SAM, we first provide empirical and theoretical insights into how SAM can implicitly learn more robust features, and conduct comprehensive experiments to show that SAM can improve adversarial robustness notably without sacrificing any clean accuracy, shedding light on the potential of SAM to be a substitute for AT when accuracy comes at a higher priority. Code is available at https://github.com/weizeming/SAM_AT.
- Abstract(参考訳): 逆行訓練(AT)は、訓練中に入力サンプルを逆行的に摂動させ、敵の攻撃に対する最も効果的な防御の1つとして認識されているが、必然的にクリーンな精度が低下している。
サンプルを摂動する代わりに、Sharpness-Aware Minimization (SAM) はトレーニング中にモデルの重量を摂動させ、より平坦な損失ランドスケープを見つけ、一般化を改善する。
しかし、SAMはより清潔な精度で設計されているため、敵の堅牢性を高める効果は未解明のままである。
本研究では,SAM と AT の双対性を考慮し,SAM から得られる対角的強靭性について検討する。
興味深いことに、SAMのみを使用することで、敵の堅牢性を向上させることができる。
このSAMの予期せぬ性質を理解するために、まずSAMがより頑健な特徴を暗黙的に学習する方法に関する経験的および理論的知見を提供し、SAMが特にクリーンな精度を犠牲にすることなく敵の堅牢性を向上できることを示す包括的な実験を行い、精度の高いATに代わるSAMの可能性に光を当てる。
コードはhttps://github.com/weizeming/SAM_AT.comで入手できる。
関連論文リスト
- Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training [47.25594539120258]
Sharpness-Aware Minimization (SAM) はトレーニングの遅滞時に効率よくフラットなミニマを選択する。
SAMの訓練の終わりに応用されたいくつかのエポックでさえ、完全なSAMトレーニングとほぼ同じ一般化と解のシャープネスをもたらす。
我々は、最終解の物性を形作る上で、最終相で選択した最適化法がより重要であると推測する。
論文 参考訳(メタデータ) (2024-10-14T10:56:42Z) - Bilateral Sharpness-Aware Minimization for Flatter Minima [61.17349662062522]
Sharpness-Aware Minimization (SAM) は Max-Sharpness (MaxS) を減らして一般化を促進する
本稿では,現在の重量を囲む周辺地域のトレーニング損失と最小損失の差を利用して,Min-Sharpness (MinS) と表現する。
MaxSとMinSをマージすることで、最適化中により平坦な方向を示すより良いFIを作成しました。特に、このFIをSAMと組み合わせて提案されたバイラテラルSAM(BSAM)に組み込むことにより、SAMよりもより平坦な最小値を求めることができます。
論文 参考訳(メタデータ) (2024-09-20T03:01:13Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy [12.050160495730381]
SAM ( sharpness-aware generalization) は性能向上に驚くべき効果があることから注目されている。
本稿では, 安定SAM (SSAM) と呼ばれる単純な再正規化戦略を提案する。
我々の戦略は実装が容易で、SAMとその変種と統合するのに十分な柔軟性があり、ほとんど計算コストがかからない。
論文 参考訳(メタデータ) (2024-01-14T10:53:36Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
ディープニューラルネットワークは、複雑で非構造的なロスランドスケープのため、しばしば一般化の貧弱さに悩まされる。
SharpnessAware Minimization (SAM) は、摂動を加える際の景観の変化を最小限に抑えることで損失を平滑化するポピュラーなソリューションである。
本稿では,二元マスクによる摂動を効果的かつ効果的に行う訓練手法であるスパースSAMを提案する。
論文 参考訳(メタデータ) (2023-06-30T09:33:41Z) - On the Robustness of Segment Anything [46.669794757467166]
我々は, SAMの試験時間ロバスト性について, 敵のシナリオと共通の腐敗下で検討することを目的としている。
SAMは、ぼやけた汚職を除いて、様々な汚職に対して顕著な堅牢性を示す。
論文 参考訳(メタデータ) (2023-05-25T16:28:30Z) - Sharpness-Aware Minimization Alone can Improve Adversarial Robustness [7.9810915020234035]
敵の強靭性の観点から,シャープネス・アウェアの最小化(SAM)について検討する。
その結果,SAMのみを用いることで,通常の訓練に比べてクリーンな精度を犠牲にすることなく,対向ロバスト性を向上できることがわかった。
SAMと対人訓練(AT)は摂動強度の点で異なることが示され、精度と頑健さのトレードオフが異なっている。
論文 参考訳(メタデータ) (2023-05-09T12:39:21Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation
Approach [132.37966970098645]
人気のソリューションの1つがSAM(Sharpness-Aware Minimization)であり、摂動を加える際の体重減少の変化を最小限に抑える。
本稿では,Sparse SAM (SSAM) とよばれる効率的な学習手法を提案する。
さらに、S が同じSAM、すなわち $O(log T/sqrtTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT で収束できることを理論的に証明する。
論文 参考訳(メタデータ) (2022-10-11T06:30:10Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。