論文の概要: GraphEdit: Large Language Models for Graph Structure Learning
- arxiv url: http://arxiv.org/abs/2402.15183v3
- Date: Thu, 29 Feb 2024 04:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 11:19:07.325715
- Title: GraphEdit: Large Language Models for Graph Structure Learning
- Title(参考訳): GraphEdit: グラフ構造学習のための大規模言語モデル
- Authors: Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, Zixuan Yang, Wei Wei,
Liang Pang, Tat-Seng Chua, Chao Huang
- Abstract要約: グラフ構造学習(GSL)は、新しいグラフ構造を生成することにより、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てる。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
- 参考スコア(独自算出の注目度): 62.618818029177355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies
and interactions among nodes in graph-structured data by generating novel graph
structures. Graph Neural Networks (GNNs) have emerged as promising GSL
solutions, utilizing recursive message passing to encode node-wise
inter-dependencies. However, many existing GSL methods heavily depend on
explicit graph structural information as supervision signals, leaving them
susceptible to challenges such as data noise and sparsity. In this work, we
propose GraphEdit, an approach that leverages large language models (LLMs) to
learn complex node relationships in graph-structured data. By enhancing the
reasoning capabilities of LLMs through instruction-tuning over graph
structures, we aim to overcome the limitations associated with explicit graph
structural information and enhance the reliability of graph structure learning.
Our approach not only effectively denoises noisy connections but also
identifies node-wise dependencies from a global perspective, providing a
comprehensive understanding of the graph structure. We conduct extensive
experiments on multiple benchmark datasets to demonstrate the effectiveness and
robustness of GraphEdit across various settings.
- Abstract(参考訳): グラフ構造学習(GSL)は、新しいグラフ構造を生成することにより、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てる。
グラフニューラルネットワーク(GNN)は、ノード単位の依存性をエンコードするために再帰的なメッセージパッシングを利用する、有望なGSLソリューションとして登場した。
しかし、既存のGSL法の多くは、データノイズやスパーシリティといった課題に対して、監督信号として明示的なグラフ構造情報に大きく依存している。
本研究では,大規模言語モデル(LLM)を利用したグラフ構造化データの複雑なノード関係の学習手法であるGraphEditを提案する。
グラフ構造上の命令チューニングによるLCMの推論能力の向上により、明示的なグラフ構造情報に関連する制約を克服し、グラフ構造学習の信頼性を高めることを目指す。
このアプローチはノイズの多いコネクションを効果的に解消するだけでなく、グローバルの観点からノード毎の依存関係を識別し、グラフ構造を包括的に理解する。
複数のベンチマークデータセットに対する広範な実験を行い、さまざまな設定でグラフ編集の有効性と堅牢性を示す。
関連論文リスト
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
我々は,TextitGlobal-augmented Graph Structure Learning (GaGSL) という新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
論文 参考訳(メタデータ) (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
グラフニューラルネットワーク(GNN)は、構造情報を符号化するための有望な技術として登場した。
主な課題は、異なる性質を持つグラフデータを一般化することの難しさである。
この課題に対処するために,OpenGraphと呼ばれる新しいグラフ基盤モデルを提案する。
論文 参考訳(メタデータ) (2024-03-02T08:05:03Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。