論文の概要: GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck
- arxiv url: http://arxiv.org/abs/2411.04356v1
- Date: Thu, 07 Nov 2024 01:23:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:54.901792
- Title: GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck
- Title(参考訳): GaGSL: グラフ情報によるグローバルなグラフ構造学習
- Authors: Shuangjie Li, Jiangqing Song, Baoming Zhang, Gaoli Ruan, Junyuan Xie, Chongjun Wang,
- Abstract要約: 我々は,TextitGlobal-augmented Graph Structure Learning (GaGSL) という新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
- 参考スコア(独自算出の注目度): 5.943641527857957
- License:
- Abstract: Graph neural networks (GNNs) are prominent for their effectiveness in processing graph data for semi-supervised node classification tasks. Most works of GNNs assume that the observed structure accurately represents the underlying node relationships. However, the graph structure is inevitably noisy or incomplete in reality, which can degrade the quality of graph representations. Therefore, it is imperative to learn a clean graph structure that balances performance and robustness. In this paper, we propose a novel method named \textit{Global-augmented Graph Structure Learning} (GaGSL), guided by the Graph Information Bottleneck (GIB) principle. The key idea behind GaGSL is to learn a compact and informative graph structure for node classification tasks. Specifically, to mitigate the bias caused by relying solely on the original structure, we first obtain augmented features and augmented structure through global feature augmentation and global structure augmentation. We then input the augmented features and augmented structure into a structure estimator with different parameters for optimization and re-definition of the graph structure, respectively. The redefined structures are combined to form the final graph structure. Finally, we employ GIB based on mutual information to guide the optimization of the graph structure to obtain the minimum sufficient graph structure. Comprehensive evaluations across a range of datasets reveal the outstanding performance and robustness of GaGSL compared with the state-of-the-art methods.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、半教師付きノード分類タスクのグラフデータ処理に有効である。
GNNのほとんどの研究は、観測された構造が根底にあるノードの関係を正確に表現していると仮定している。
しかし、グラフ構造は必然的にノイズや不完全であり、グラフ表現の質を低下させることができる。
したがって、性能と堅牢性のバランスをとるクリーンなグラフ構造を学ぶことが不可欠である。
本稿では,GGSL(Graph Information Bottleneck, グラフ情報ボトルネック, GIB)の原理に導かれる新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
具体的には、元の構造のみに依存することにより生じるバイアスを軽減するため、まず、グローバルな特徴増強とグローバルな構造増強を通じて、拡張された特徴と拡張された構造を得る。
次に,グラフ構造の最適化と再定義のためのパラメータの異なる構造推定器に,拡張特徴と拡張構造を入力した。
再定義された構造は、最終グラフ構造を形成するために結合される。
最後に、GIBを用いてグラフ構造の最適化を誘導し、最小限のグラフ構造を得る。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
関連論文リスト
- Graph Structure Learning with Bi-level Optimization [2.2435959256503377]
本稿では,グラフネットワーク(GNN)のロバスト性を改善するため,グラフ構造学習(GSL)手法を提案する。
本稿では,GNNを学習構造や共通パラメータの形で変換する汎用構造抽出器を提案する。
グラフ構造学習(GSEBO)のための2段階最適化を用いた新しい二段階最適化, ie textitGeneric Structure extract として学習過程をモデル化する。
提案したGSEBOを古典的GNN上でインスタンス化し、最先端のGSL手法と比較する。
論文 参考訳(メタデータ) (2024-11-26T03:00:30Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Self-organization Preserved Graph Structure Learning with Principle of
Relevant Information [72.83485174169027]
PRI-GSLは、自己組織化を特定し、隠された構造を明らかにするグラフ構造学習フレームワークである。
PRI-GSLは、フォン・ノイマンエントロピーと量子ジェンセン=シャノンの発散によって定量化された最も関連性が最も低い冗長な情報を含む構造を学ぶ。
論文 参考訳(メタデータ) (2022-12-30T16:02:02Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Compact Graph Structure Learning via Mutual Information Compression [79.225671302689]
グラフ構造学習(GSL)は、グラフニューラルネットワーク(GNN)のグラフ構造と学習パラメータを最適化する能力に大きな注目を集めている。
我々は、MI圧縮によるコンパクトGSLアーキテクチャ、CoGSLを提案する。
クリーンで攻撃的な条件下で複数のデータセットに対して広範な実験を行い、CoGSLの有効性とロバスト性を実証した。
論文 参考訳(メタデータ) (2022-01-14T16:22:33Z) - Deep Graph Structure Learning for Robust Representations: A Survey [20.564611153151834]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの解析に広く利用されている。
GNNモデルの堅牢性を改善するため、グラフ構造学習の中心概念を中心に多くの研究が提案されている。
論文 参考訳(メタデータ) (2021-03-04T13:49:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。