論文の概要: Classification Under Strategic Self-Selection
- arxiv url: http://arxiv.org/abs/2402.15274v2
- Date: Sun, 23 Jun 2024 10:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:51:30.677797
- Title: Classification Under Strategic Self-Selection
- Title(参考訳): 戦略的自己選択に基づく分類
- Authors: Guy Horowitz, Yonatan Sommer, Moran Koren, Nir Rosenfeld,
- Abstract要約: 自己選択が学習に与える影響と,学習が自己選択集団の構成に及ぼす影響について検討した。
本稿では,自己選択行動下での学習を効果的に最適化できる,識別可能なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.168262355330299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When users stand to gain from certain predictions, they are prone to act strategically to obtain favorable predictive outcomes. Whereas most works on strategic classification consider user actions that manifest as feature modifications, we study a novel setting in which users decide -- in response to the learned classifier -- whether to at all participate (or not). For learning approaches of increasing strategic awareness, we study the effects of self-selection on learning, and the implications of learning on the composition of the self-selected population. We then propose a differentiable framework for learning under self-selective behavior, which can be optimized effectively. We conclude with experiments on real data and simulated behavior that both complement our analysis and demonstrate the utility of our approach.
- Abstract(参考訳): 特定の予測から得られると、ユーザーは戦略的に行動し、好ましい予測結果を得る傾向にある。
戦略的分類に関するほとんどの研究は、機能修正として表されるユーザアクションを考慮しているが、学習された分類器に応答して、ユーザーが決定する新しい設定について研究している。
戦略的認知度を高めるための学習手法として,自己選択が学習に与える影響と,自己選択集団の構成に学習が与える影響について検討する。
次に,自己選択行動下での学習を効果的に最適化できる,識別可能なフレームワークを提案する。
我々は、実データの実験と、我々の分析を補完し、我々のアプローチの有用性を実証するシミュレートされた行動で締めくくります。
関連論文リスト
- ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Causal Strategic Classification: A Tale of Two Shifts [11.929584800629675]
戦略行動と因果効果が,2つの相補的な分布シフトをいかに生み出すかを示す。
本稿では,この2つの力のバランスと時間とともに学習アルゴリズムを提案し,エンドツーエンドのトレーニングを可能にした。
論文 参考訳(メタデータ) (2023-02-13T11:35:59Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Strategic Classification with Graph Neural Networks [10.131895986034316]
学習にグラフを使用すると、予測にユーザ間の依存関係が導入される。
本稿では,グラフに基づく分類器の戦略的ロバスト学習のための微分可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-31T13:11:25Z) - Generalized Strategic Classification and the Case of Aligned Incentives [16.607142366834015]
戦略的なユーザー行動の理由について、より広い視点で議論する。
我々のモデルは現在のモデルの多くを仮定するが、他の新しい設定を含んでいる。
結果とアプローチが,最も一般的なケースにどのように拡張できるかを示す。
論文 参考訳(メタデータ) (2022-02-09T09:36:09Z) - Targeted Active Learning for Bayesian Decision-Making [15.491942513739676]
サンプルを逐次取得する際には,学習と意思決定を分離することが準最適である。
本稿では,ダウン・ザ・ライン決定問題を考慮に入れた,新たなアクティブな学習戦略を提案する。
具体的には、最適決定の後続分布における期待情報ゲインを最大化する、新しい能動的学習基準を導入する。
論文 参考訳(メタデータ) (2021-06-08T09:05:43Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Rebuilding Trust in Active Learning with Actionable Metrics [77.99796068970569]
アクティブラーニング(AL)は研究の活発な領域であるが、プレッシャーのあるニーズにもかかわらず、業界ではほとんど使われない。
これは部分的には目的のずれによるものであり、研究は選択したデータセットで最高の結果を得るよう努力している。
積極的学習における産業実践者の信頼回復を支援するために,様々な活動可能な指標を提示する。
論文 参考訳(メタデータ) (2020-12-18T09:34:59Z) - Linear Classifiers that Encourage Constructive Adaptation [6.324366770332667]
本研究では,2段階ゲームとしての予測と適応のダイナミクスを考察し,モデルデザイナとその決定対象に対する最適な戦略を特徴付ける。
シミュレーションおよび実世界のデータセットのベンチマークでは、我々の手法を用いて訓練された分類器が既存の手法の精度を維持しつつ、より高いレベルの改善と少ない操作を誘導していることがわかった。
論文 参考訳(メタデータ) (2020-10-31T20:35:32Z) - Learning "What-if" Explanations for Sequential Decision-Making [92.8311073739295]
実世界の意思決定の解釈可能なパラメータ化を実証行動に基づいて構築することが不可欠である。
そこで我々は,「何」の結果に対する嗜好の観点から,報酬関数をモデル化し,専門家による意思決定の学習的説明を提案する。
本研究は,行動の正確かつ解釈可能な記述を回復する上で,実効的逆強化学習手法であるバッチの有効性を強調した。
論文 参考訳(メタデータ) (2020-07-02T14:24:17Z) - Inverse Active Sensing: Modeling and Understanding Timely
Decision-Making [111.07204912245841]
我々は,内因性,文脈依存型時間圧下でのエビデンスに基づく意思決定の一般的な設定のための枠組みを開発する。
意思決定戦略において、サプライズ、サスペンス、最適性の直感的な概念をモデル化する方法を実証する。
論文 参考訳(メタデータ) (2020-06-25T02:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。