論文の概要: Trustworthy confidential virtual machines for the masses
- arxiv url: http://arxiv.org/abs/2402.15277v1
- Date: Fri, 23 Feb 2024 11:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:28:31.120724
- Title: Trustworthy confidential virtual machines for the masses
- Title(参考訳): 大衆のための信頼できる機密仮想マシン
- Authors: Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet, Christof Fetzer, Rüdiger Kapitza,
- Abstract要約: Revelioは、シークレット仮想マシン(VM)ベースのワークロードを、サービスプロバイダによる改ざんを許容する方法で設計およびデプロイ可能にするアプローチです。
SEV-SNPを活用してWeb対応ワークロードを保護し、新しいWebセッションが確立されるたびに、エンドユーザがシームレスにそれらを証明できるようにします。
- 参考スコア(独自算出の注目度): 1.6503985024334136
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Confidential computing alleviates the concerns of distrustful customers by removing the cloud provider from their trusted computing base and resolves their disincentive to migrate their workloads to the cloud. This is facilitated by new hardware extensions, like AMD's SEV Secure Nested Paging (SEV-SNP), which can run a whole virtual machine with confidentiality and integrity protection against a potentially malicious hypervisor owned by an untrusted cloud provider. However, the assurance of such protection to either the service providers deploying sensitive workloads or the end-users passing sensitive data to services requires sending proof to the interested parties. Service providers can retrieve such proof by performing remote attestation while end-users have typically no means to acquire this proof or validate its correctness and therefore have to rely on the trustworthiness of the service providers. In this paper, we present Revelio, an approach that features two main contributions: i) it allows confidential virtual machine (VM)-based workloads to be designed and deployed in a way that disallows any tampering even by the service providers and ii) it empowers users to easily validate their integrity. In particular, we focus on web-facing workloads, protect them leveraging SEV-SNP, and enable end-users to remotely attest them seamlessly each time a new web session is established. To highlight the benefits of Revelio, we discuss how a standalone stateful VM that hosts an open-source collaboration office suite can be secured and present a replicated protocol proxy that enables commodity users to securely access the Internet Computer, a decentralized blockchain infrastructure.
- Abstract(参考訳): 信頼性コンピューティングは、クラウドプロバイダを信頼されたコンピューティングベースから排除し、ワークロードをクラウドに移行するという不関心を解消することで、不信な顧客の懸念を軽減する。
これは、AMDのSEV Secure Nested Paging (SEV-SNP)のような新しいハードウェア拡張によって促進される。
しかしながら、機密性の高いワークロードをデプロイするサービスプロバイダや、機密データをサービスに渡すエンドユーザに対して、そのような保護が保証されるためには、関係者に証拠を送信する必要がある。
サービスプロバイダは、リモート検証を行うことで、このような証明を取得することができるが、エンドユーザは通常、この証明を取得したり、その正しさを検証する手段を持っていないため、サービスプロバイダの信頼性に頼る必要がある。
本稿では,2つの主要なコントリビューションを特徴とするアプローチであるRevelioを紹介する。
i)シークレット仮想マシン(VM)ベースのワークロードを、サービスプロバイダによってさえも改ざんを許さない方法で設計し、デプロイすることができる。
二 ユーザに対し、その完全性を容易に検証する権限を付与すること。
特に、Web対応のワークロードに注力し、SEV-SNPを活用して保護し、新しいWebセッションが確立されるたびに、エンドユーザがシームレスにそれらを証明できるようにします。
Revelioのメリットを強調するために、オープンソースコラボレーションオフィススイートをホストするスタンドアロンのステートフルVMのセキュリティと、コモディティユーザが分散化されたブロックチェーンインフラストラクチャであるInternet Computerに安全にアクセス可能なレプリケーションプロトコルプロキシの提示について論じる。
関連論文リスト
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - Confidential Prompting: Protecting User Prompts from Cloud LLM Providers [0.688204255655161]
ユーザプロンプトを信頼された実行環境に限定するために,セキュアなマルチパーティデコーディング(SMD)を導入する。
また,再建攻撃に対する堅牢性を確保するため,新しい暗号手法であるPrompt Obfuscation(PO)を導入する。
我々のソリューションは、臨床記録、財務データ、個人情報などの機密性の高いプロンプトを処理する、プライバシ保護クラウドLLMサービスを可能にする。
論文 参考訳(メタデータ) (2024-09-27T20:32:42Z) - CRISP: Confidentiality, Rollback, and Integrity Storage Protection for Confidential Cloud-Native Computing [0.757843972001219]
クラウドネイティブなアプリケーションはオーケストレーションに依存しており、サービスを頻繁に再起動させる。
再起動中、攻撃者は機密サービスの状態を悪意のある意図を助長する可能性のある以前のバージョンに戻すことができる。
本稿では,Intel SGXの既存のランタイムを使用してロールバックを透過的に防止するロールバック保護機構であるCRISPを提案する。
論文 参考訳(メタデータ) (2024-08-13T11:29:30Z) - Confidential Federated Computations [16.415880530250092]
Federated Learning and Analytics (FLA)は、デバイス上の機密データを処理するためのテクノロジプラットフォームによって広く採用されている。
FLAシステムは必ずしも差分プライバシー(DP)のような匿名化機構を必要としない
本稿では,サーバサイドの計算の秘密性を確保するために,TEEとオープンソースを活用した新しいシステムアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-04-16T17:47:27Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Robust and Actively Secure Serverless Collaborative Learning [48.01929996757643]
コラボレーティブ機械学習(ML)は、分散データからより良いモデルを学ぶために広く利用されている。
学習のための協調的なアプローチは、直感的にユーザデータを保護しますが、サーバ、クライアント、あるいはその両方に対して脆弱なままです。
本稿では、悪意のあるサーバに対してセキュアで、悪意のあるクライアントに対して堅牢なピアツーピア学習方式を提案する。
論文 参考訳(メタデータ) (2023-10-25T14:43:03Z) - Putting a Padlock on Lambda -- Integrating vTPMs into AWS Firecracker [49.1574468325115]
ソフトウェアサービスは、明確な信頼関係なしに、クラウドプロバイダに対して暗黙の信頼を置いている。
現在、Trusted Platform Module機能を公開するクラウドプロバイダは存在しない。
仮想TPMデバイスをAmazon Web Servicesによって開発されたFirecrackerに統合することで信頼性を向上させる。
論文 参考訳(メタデータ) (2023-10-05T13:13:55Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
プライバシ保護フェデレーション学習は、分散クライアントの集団が共同で共有モデルを学ぶことを可能にする。
本稿では、このようなクライアントの共謀に対して最初に保護する、難解な分散差分プライバシーに基づく効率的なメカニズムを提案する。
我々は,プロトコルの実行速度,学習精度,および2つのデータセットのプライバシ性能を実証的に分析した。
論文 参考訳(メタデータ) (2022-02-20T19:52:53Z) - Secure Byzantine-Robust Machine Learning [61.03711813598128]
本稿では,Byzantine-robustnessとByzantine-robustnessの両方を提供するセキュアな2サーバプロトコルを提案する。
さらに、このプロトコルは通信効率が高く、フォールトトレラントであり、局所的な差分プライバシーを享受する。
論文 参考訳(メタデータ) (2020-06-08T16:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。