論文の概要: The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective
- arxiv url: http://arxiv.org/abs/2401.01589v1
- Date: Wed, 3 Jan 2024 07:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:57:08.097375
- Title: The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective
- Title(参考訳): モバイルエッジコンピューティングのセキュリティとプライバシ - 人工知能の視点から
- Authors: Cheng Wang, Zenghui Yuan, Pan Zhou, Zichuan Xu, Ruixuan Li, Dapeng Oliver Wu,
- Abstract要約: Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
- 参考スコア(独自算出の注目度): 64.36680481458868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge. By shifting the load of cloud computing to individual local servers, MEC helps meet the requirements of ultralow latency, localized data processing, and extends the potential of Internet of Things (IoT) for end-users. However, the crosscutting nature of MEC and the multidisciplinary components necessary for its deployment have presented additional security and privacy concerns. Fortunately, Artificial Intelligence (AI) algorithms can cope with excessively unpredictable and complex data, which offers a distinct advantage in dealing with sophisticated and developing adversaries in the security industry. Hence, in this paper we comprehensively provide a survey of security and privacy in MEC from the perspective of AI. On the one hand, we use European Telecommunications Standards Institute (ETSI) MEC reference architecture as our based framework while merging the Software Defined Network (SDN) and Network Function Virtualization (NFV) to better illustrate a serviceable platform of MEC. On the other hand, we focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI. Finally, we comprehensively discuss the opportunities and challenges associated with applying AI to MEC security and privacy as possible future research directions.
- Abstract(参考訳): Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
クラウドコンピューティングの負荷を個々のローカルサーバに移行することで、MECは、極低レイテンシ、ローカライズされたデータ処理の要件を満たすことを支援し、エンドユーザのためのIoT(Internet of Things)の可能性を拡張する。
しかし、MECの横断的な性質とデプロイメントに必要な多分野のコンポーネントは、さらなるセキュリティとプライバシに関する懸念を示している。
幸いなことに、人工知能(AI)アルゴリズムは、過度に予測不可能で複雑なデータを扱うことができるため、セキュリティ業界の高度な敵に対処する上で、明確なアドバンテージを提供する。
そこで本稿では,AIの観点からMECのセキュリティとプライバシに関する調査を包括的に実施する。
一方、欧州電気通信標準機構(ETSI)のMEC参照アーキテクチャをベースとして、Software Defined Network(SDN)とNetwork Function Virtualization(NFV)を統合して、MECのサービス可能なプラットフォームをよりよく説明します。
一方、私たちは、新しいセキュリティとプライバシの問題と、AIの観点からの潜在的な解決策に焦点を当てています。
最後に、将来の研究方向性として、MECのセキュリティとプライバシにAIを適用する際の機会と課題を包括的に議論する。
関連論文リスト
- Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) は、現代のサイバーセキュリティに対する変革的なアプローチである。
ZTAは、ユーザ、デバイス、システムがデフォルトで信頼できないことを前提として、セキュリティパラダイムをシフトする。
本稿では、アイデンティティとアクセス管理(IAM)、マイクロセグメンテーション、継続的監視、行動分析など、ZTAの重要なコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-10-23T21:53:16Z) - Privacy-Preserving Decentralized AI with Confidential Computing [0.7893328752331561]
本稿では、Atoma Network内のCC(Confidential Computing)を用いた分散人工知能(AI)におけるプライバシ保護について述べる。
CCはハードウェアベースのTrusted Execution Environments (TEE)を活用して、機密データ処理の分離を提供する。
私たちはどのようにしてTEEをAtomaの分散フレームワークに統合できるかを検討します。
論文 参考訳(メタデータ) (2024-10-17T16:50:48Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [56.44953602790945]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
この記事では、NSVADの初心者向けの包括的なチュートリアルを紹介します。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
本稿では,人工知能(AI)をサイバー脅威知能(CTI)に統合する可能性について検討する。
我々は、AIに強化されたCTI処理パイプラインの青写真を提供し、そのコンポーネントと機能について詳述する。
倫理的ジレンマ、潜在的なバイアス、そしてAIによる意思決定における透明性の必須事項について論じる。
論文 参考訳(メタデータ) (2024-03-05T19:03:56Z) - A Review of Machine Learning-based Security in Cloud Computing [5.384804060261833]
クラウドコンピューティング(CC)は、ITリソースのユーザへの提供方法に革命をもたらしている。
CCの成長に伴い、可用性、完全性、機密性への脅威など、セキュリティ上のリスクが多数発生している。
機械学習(ML)は、セキュリティ問題の特定と解決における人間の介入を減らすために、クラウドサービスプロバイダ(CSP)によってますます利用されている。
論文 参考訳(メタデータ) (2023-09-10T01:52:23Z) - Mobile Edge Computing, Metaverse, 6G Wireless Communications, Artificial
Intelligence, and Blockchain: Survey and Their Convergence [14.855306407950058]
本稿では,現代の応用の厳密な要件を満たすために使用される計算パラダイムについて検討する。
モバイル拡張現実(MAR)におけるMECの適用シナリオを提供する。
本稿では,MECをベースとしたMetaverseのモチベーションを示し,MetaverseへのMECの適用について紹介する。
論文 参考訳(メタデータ) (2022-09-28T14:54:06Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。