論文の概要: Active Few-Shot Fine-Tuning
- arxiv url: http://arxiv.org/abs/2402.15441v3
- Date: Thu, 20 Jun 2024 10:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 05:09:24.226649
- Title: Active Few-Shot Fine-Tuning
- Title(参考訳): アクティブショットファインチューニング
- Authors: Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause,
- Abstract要約: 特定のタスクに微調整する適切なデータをどのように選択すればよいか?
我々は、このデータ選択問題をアクティブ微調整と呼び、それがトランスダクティブアクティブラーニングの例であることを示す。
本稿では,情報に基づくトランスダクティブ学習を短縮したIDLを提案する。
- 参考スコア(独自算出の注目度): 35.49225932333298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the question: How can we select the right data for fine-tuning to a specific task? We call this data selection problem active fine-tuning and show that it is an instance of transductive active learning, a novel generalization of classical active learning. We propose ITL, short for information-based transductive learning, an approach which samples adaptively to maximize information gained about the specified task. We are the first to show, under general regularity assumptions, that such decision rules converge uniformly to the smallest possible uncertainty obtainable from the accessible data. We apply ITL to the few-shot fine-tuning of large neural networks and show that fine-tuning with ITL learns the task with significantly fewer examples than the state-of-the-art.
- Abstract(参考訳): 特定のタスクに微調整する適切なデータをどのように選択すればよいか?
我々はこのデータ選択問題をアクティブ微調整と呼び、古典的アクティブラーニングの新しい一般化であるトランスダクティブアクティブラーニングの例であることを示す。
本稿では,情報に基づくトランスダクティブ学習を短縮した ITL を提案する。
我々は、一般的な正則性仮定の下で、そのような決定規則がアクセス可能なデータから得られる最小の不確実性に一様に収束することを初めて示す。
我々は、大規模なニューラルネットワークの数ショットの微調整にIDLを適用し、IDLを用いた微調整が、最先端技術よりもはるかに少ない例でタスクを学習することを示す。
関連論文リスト
- Active Prompt Learning with Vision-Language Model Priors [9.173468790066956]
視覚言語モデルの事前学習画像とテキストエンコーダを利用するクラス誘導クラスタリングを提案する。
適応型クラスワイドしきい値に基づく予算削減型選択クエリを提案する。
論文 参考訳(メタデータ) (2024-11-23T02:34:33Z) - DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
マルチオペレータ学習を実現するためのファインチューニング手法を提案する。
本手法は,事前学習における各種演算子からのデータを分散学習と組み合わせ,物理インフォームド手法によりゼロショット微調整が可能となる。
論文 参考訳(メタデータ) (2024-11-11T18:58:46Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - FUNCK: Information Funnels and Bottlenecks for Invariant Representation
Learning [7.804994311050265]
データから不変表現を学習すると主張する一連の関連する情報漏えいとボトルネック問題について検討する。
本稿では,この情報理論の目的である「側情報付き条件付きプライバシ・ファンネル」の新たな要素を提案する。
一般に難解な目的を考慮し、ニューラルネットワークによってパラメータ化された補正変分推論を用いて、抽出可能な近似を導出する。
論文 参考訳(メタデータ) (2022-11-02T19:37:55Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
我々は情報理論のレンズを通して連続学習過程を研究する。
モデルパラメータの情報利得を維持するビットレベル情報保存(BLIP)を提案する。
BLIPは、連続的な学習を通してメモリオーバーヘッドを一定に保ちながら、ほとんど忘れることができない。
論文 参考訳(メタデータ) (2021-05-10T15:09:01Z) - Active Learning: Problem Settings and Recent Developments [2.1574781022415364]
本稿では,アクティブラーニングの基本的課題と最近の研究動向について述べる。
特に,ラベリング用データからサンプルを選択する学習獲得関数の研究,アクティブ学習アルゴリズムに関する理論的研究,逐次データ取得のための停止基準について注目する。
論文 参考訳(メタデータ) (2020-12-08T05:24:06Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
本稿では,従来の課題から知識を移譲することで,新たな課題を学習する際のサンプルの複雑さを軽減する方法について述べる。
この種の事前知識を使用することのメリットを明確に示すために,PAC境界のサンプル複雑性を導出する。
簡単なシミュレートされた領域における理論的な発見を実証的に検証する。
論文 参考訳(メタデータ) (2020-07-01T19:53:35Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
本研究では,33のNLPタスク間の伝達可能性について検討した。
以上の結果から,転帰学習は従来考えられていたよりも有益であることが示唆された。
また,特定の対象タスクに対して最も転送可能なソースタスクを予測するために使用できるタスク埋め込みも開発した。
論文 参考訳(メタデータ) (2020-05-02T09:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。