論文の概要: DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning
- arxiv url: http://arxiv.org/abs/2411.07239v1
- Date: Mon, 11 Nov 2024 18:58:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:08:24.632026
- Title: DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning
- Title(参考訳): マルチオペレータ外挿モデルとしてのDeepONet:物理インフォームドファインチューニングによる分散事前学習
- Authors: Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin, Hayden Schaeffer,
- Abstract要約: マルチオペレータ学習を実現するためのファインチューニング手法を提案する。
本手法は,事前学習における各種演算子からのデータを分散学習と組み合わせ,物理インフォームド手法によりゼロショット微調整が可能となる。
- 参考スコア(独自算出の注目度): 6.635683993472882
- License:
- Abstract: We propose a novel fine-tuning method to achieve multi-operator learning through training a distributed neural operator with diverse function data and then zero-shot fine-tuning the neural network using physics-informed losses for downstream tasks. Operator learning effectively approximates solution operators for PDEs and various PDE-related problems, yet it often struggles to generalize to new tasks. To address this, we investigate fine-tuning a pretrained model, while carefully selecting an initialization that enables rapid adaptation to new tasks with minimal data. Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning, minimizing the reliance on downstream data. We investigate standard fine-tuning and Low-Rank Adaptation fine-tuning, applying both to train complex nonlinear target operators that are difficult to learn only using random initialization. Through comprehensive numerical examples, we demonstrate the advantages of our approach, showcasing significant improvements in accuracy. Our findings provide a robust framework for advancing multi-operator learning and highlight the potential of transfer learning techniques in this domain.
- Abstract(参考訳): 本稿では,分散ニューラル演算子を多様な関数データで訓練し,物理インフォームド・ロスを用いてニューラルネットワークをゼロショット微調整することで,下流タスクのマルチオペレータ学習を実現するための新しいファインチューニング手法を提案する。
演算子学習は、PDEと様々なPDE関連の問題に対する解演算子を効果的に近似するが、新しいタスクへの一般化に苦慮することが多い。
そこで本研究では、最小限のデータで新しいタスクに迅速に適応できる初期化を慎重に選択しながら、事前訓練されたモデルの微調整について検討する。
提案手法は,事前学習における各種演算子からのデータを分散学習と組み合わせ,物理インフォームド手法によりゼロショット微調整が可能となり,下流データへの依存を最小限に抑える。
ランダム初期化のみを用いて学習し難い複雑な非線形対象演算子を訓練するために、標準的な微調整と低ランク適応微調整について検討する。
総合的な数値的な例を通して、我々のアプローチの利点を実証し、精度を大幅に改善したことを示す。
本研究は,多目的学習を推進するための堅牢なフレームワークを提供し,この領域における伝達学習の可能性を強調した。
関連論文リスト
- LeMON: Learning to Learn Multi-Operator Networks [0.6554326244334868]
シングルオペレータ学習では、特定のオペレータを学ぶために、ディープニューラルネットワークをトレーニングする。
マルチオペレータ学習における最近の研究は、演算子埋め込み構造を使用して、複数の演算子のデータ上で単一のニューラルネットワークをトレーニングしている。
マルチオペレータ学習を用いてPDEを解くための事前学習および微調整戦略を提案する。
論文 参考訳(メタデータ) (2024-08-28T23:20:03Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
ディープラーニングモデルを非定常環境に適用することの本質的な困難さは、ニューラルネットワークの実際のタスクへの適用性を制限している。
ネットワークの事前学習部分の更新を回避し、通常の分類ヘッドだけでなく、新たに導入した学習可能なパラメータのセットも学習することで、微調整手順をより効果的にするための新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-06-05T15:11:59Z) - Variational operator learning: A unified paradigm marrying training
neural operators and solving partial differential equations [9.148052787201797]
ニューラル演算子を訓練し、変分形式でPDEを解くための統一的な枠組みを提供する新しいパラダイムを提案する。
ラベルなしのトレーニングセットと5ラベルのみのシフトセットにより、VOLは、未ラベルデータの量に関して、そのテストエラーが電力法則で減少して解演算子を学習する。
論文 参考訳(メタデータ) (2023-04-09T13:20:19Z) - Understanding and Improving Transfer Learning of Deep Models via Neural Collapse [37.483109067209504]
分類問題に対する神経崩壊(NC)と伝達学習の関係について検討する。
機能崩壊と下流のパフォーマンスには強い相関関係がある。
提案手法は, 微調整パラメータを90%以上削減しつつ, 優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-23T08:48:34Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
トラベリングセールスパーソン問題(TSP)のようなグラフ最適化問題に対するニューラルネットワークソルバのエンドツーエンドトレーニングは近年,関心が高まっている。
最先端の学習駆動アプローチは、自明に小さなサイズで訓練された場合、古典的な解法と密接に関係するが、実践的な規模で学習ポリシーを大規模に一般化することはできない。
この研究は、トレーニングで見られるものよりも大きいインスタンスへの一般化を促進する、原則化されたバイアス、モデルアーキテクチャ、学習アルゴリズムを特定するために、最近の論文を統一するエンドツーエンドのニューラルネットワークパイプラインを提示している。
論文 参考訳(メタデータ) (2020-06-12T10:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。