Process tensor approaches to modeling two-dimensional spectroscopy
- URL: http://arxiv.org/abs/2402.15454v3
- Date: Thu, 22 Aug 2024 15:21:29 GMT
- Title: Process tensor approaches to modeling two-dimensional spectroscopy
- Authors: Roosmarijn de Wit, Jonathan Keeling, Brendon W. Lovett, Alex W. Chin,
- Abstract summary: We present a numerical method to model optical spectra of non-Markovian open quantum systems.
To demonstrate the efficacy of our method, we compare 2D electronic spectroscopy simulations produced through our method to Markovian master equation simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Problems in the field of open quantum systems often involve an environment that strongly influences the dynamics of excited states. Here we present a numerical method to model optical spectra of non-Markovian open quantum systems. The method employs a process tensor framework to efficiently compute multi-time correlations in a numerically exact way. To demonstrate the efficacy of our method, we compare 2D electronic spectroscopy simulations produced through our method to Markovian master equation simulations in three different system-bath coupling regimes.
Related papers
- Spectral Densities, Structured Noise and Ensemble Averaging within Open Quantum Dynamics [0.0]
We present advances for the Numerical Integration of Schr"odinger Equation (NISE)
We introduce a modified ensemble-averaging procedure that improves the long-time behavior of the thermalized variant of the NISE scheme.
We demonstrate how to use the NISE in conjunction with (highly) structured spectral densities by utilizing a noise generating algorithm for arbitrary structured noise.
arXiv Detail & Related papers (2024-10-05T22:00:19Z) - Deep Stochastic Mechanics [17.598067133568062]
This paper introduces a novel deep-learning-based approach for numerical simulation of a time-evolving Schr"odinger equation.
Our method allows us to adapt to the latent low-dimensional structure of the wave function by sampling from the Markovian diffusion.
arXiv Detail & Related papers (2023-05-31T09:28:03Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Simulating spectroscopy experiments with a superconducting quantum
computer [0.0]
We present a novel method for solving eigenvalue problems on a quantum computer based on spectroscopy.
The method works by coupling a "probe" qubit to a set of system simulation qubits and then time evolving both the probe and the system under Hamiltonian dynamics.
We test our method on the IBM quantum hardware for a simple single spin model and an interacting Kitaev chain model.
arXiv Detail & Related papers (2022-02-25T19:02:03Z) - Modeling of Multimodal Scattering by Conducting Bodies in Quantum
Optics: the Method of Characteristic Modes [0.0]
We give the quantum adaptation of the characteristic mode approach widely used in the classical electrodynamics.
We show how scattering affects quantum-statistical features of the field.
We expect that this method will be useful for designing quantum-optical devices.
arXiv Detail & Related papers (2021-12-17T14:25:59Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Method of spectral Green functions in driven open quantum dynamics [77.34726150561087]
A novel method based on spectral Green functions is presented for the simulation of driven open quantum dynamics.
The formalism shows remarkable analogies to the use of Green functions in quantum field theory.
The method dramatically reduces computational cost compared with simulations based on solving the full master equation.
arXiv Detail & Related papers (2020-06-04T09:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.