Restricted Monte Carlo wave function method and Lindblad equation for identifying entangling open-quantum-system dynamics
- URL: http://arxiv.org/abs/2412.08735v1
- Date: Wed, 11 Dec 2024 19:05:34 GMT
- Title: Restricted Monte Carlo wave function method and Lindblad equation for identifying entangling open-quantum-system dynamics
- Authors: Laura Ares, Julien Pinske, Benjamin Hinrichs, Martin Kolb, Jan Sperling,
- Abstract summary: Our algorithm performs tangential projections onto the set of separable states, leading to classically correlated quantum trajectories.
Applying this method is equivalent to solving the nonlinear master equation in Lindblad form introduced in citePAH24 for two-qubit systems.
We identify the impact of dynamical entanglement in open systems by applying our approach to several correlated decay processes.
- Score: 0.0
- License:
- Abstract: We develop an extension of the Monte Carlo wave function approach that unambiguously identifies dynamical entanglement in general composite, open systems. Our algorithm performs tangential projections onto the set of separable states, leading to classically correlated quantum trajectories. By comparing this restricted evolution with the unrestricted one, we can characterize the entangling capabilities of quantum channels without making use of input-output relations. Moreover, applying this method is equivalent to solving the nonlinear master equation in Lindblad form introduced in \cite{PAH24} for two-qubit systems. We here extend these equations to multipartite systems of qudits, describing non-entangling dynamics in terms of a stochastic differential equation. We identify the impact of dynamical entanglement in open systems by applying our approach to several correlated decay processes. Therefore, our methodology provides a complete and ready-to-use framework to characterize dynamical quantum correlations caused by arbitrary open-system processes.
Related papers
- Separability Lindblad equation for dynamical open-system entanglement [0.0]
We put forth a new class of nonlinear quantum master equations in Lindblad form that unambiguously identify dynamical entanglement in open quantum systems.
This separability Lindblad equation restricts quantum trajectories to classically correlated states only.
Our results allow to benchmark the engineering of entangled states through dissipation.
arXiv Detail & Related papers (2024-12-11T19:00:08Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Driven-dissipative criticality within the discrete truncated Wigner
approximation [0.0]
We establish a quantum jump formalism to integrate the quantum master equation describing the dynamics of the system.
We apply our method to simulation of the paradigmatic dissipative Ising model, where we are able to capture the critical fluctuations of the system beyond the level of mean-field theory.
arXiv Detail & Related papers (2021-08-16T18:00:01Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Phase space theory for open quantum systems with local and collective
dissipative processes [0.0]
We investigate driven dissipative quantum dynamics of an ensemble of two-level systems given by a Markovian master equation with collective and noncollective dissipators.
Our results expose, utilize and promote pioneered techniques in the context of laser theory.
arXiv Detail & Related papers (2020-06-05T07:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.