Modeling phonon-mediated quasiparticle poisoning in superconducting qubit arrays
- URL: http://arxiv.org/abs/2402.15471v2
- Date: Fri, 2 Aug 2024 19:52:46 GMT
- Title: Modeling phonon-mediated quasiparticle poisoning in superconducting qubit arrays
- Authors: Eric Yelton, Clayton P. Larson, Vito Iaia, Kenneth Dodge, Guglielmo La Magna, Paul G. Baity, Ivan V. Pechenezhskiy, Robert McDermott, Noah Kurinsky, Gianluigi Catelani, Britton L. T. Plourde,
- Abstract summary: Correlated errors caused by ionizing radiation impacting superconducting qubit chips are problematic for quantum error correction.
We describe a comprehensive strategy for the numerical simulation of the phonon and quasiparticle dynamics in the aftermath of an impact.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correlated errors caused by ionizing radiation impacting superconducting qubit chips are problematic for quantum error correction. Such impacts generate quasiparticle (QP) excitations in the qubit electrodes, which temporarily reduce qubit coherence significantly. The many energetic phonons produced by a particle impact travel efficiently throughout the device substrate and generate quasiparticles with high probability, thus causing errors on a large fraction of the qubits in an array simultaneously. We describe a comprehensive strategy for the numerical simulation of the phonon and quasiparticle dynamics in the aftermath of an impact. We compare the simulations with experimental measurements of phonon-mediated QP poisoning and demonstrate that our modeling captures the spatial and temporal footprint of the QP poisoning for various configurations of phonon downconversion structures. We thus present a path forward for the operation of superconducting quantum processors in the presence of ionizing radiation.
Related papers
- Photo-induced charge carrier dynamics in a semiconductor-based ion trap
investigated via motion-sensitive qubit transitions [3.90220662841177]
We present a photo-induced charging model for semiconductors, whose verification is enabled by a systematic interaction between trapped ions and photo-induced stray fields.
In contrast to incoherent errors arising from the thermal motion of the ion, coherent errors are induced by the stray field, whose effect is significantly imprinted during the quantum control of the ion.
arXiv Detail & Related papers (2023-11-29T16:19:55Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Phononic bath engineering of a superconducting qubit [0.0]
Unintended coupling to phonons can lead to correlated errors in superconducting qubit systems.
We show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems.
arXiv Detail & Related papers (2022-08-15T20:14:16Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Mitigation of quasiparticle loss in superconducting qubits by phonon
scattering [2.959938599901649]
In superconducting qubits the assumption that errors are sufficiently uncorrelated in space and time is violated by ionizing radiation.
A potential mitigation technique is to place large volumes of normal or superconducting metal on the device, capable of reducing the phonon energy to below the superconducting gap of the qubits.
We investigate the effectiveness of this method in protecting superconducting qubit processors against correlated errors from ionizing radiation.
arXiv Detail & Related papers (2022-07-26T09:02:30Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Phonon downconversion to suppress correlated errors in superconducting
qubits [0.0]
High-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state.
We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits.
We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20.
arXiv Detail & Related papers (2022-03-13T06:30:07Z) - Engineering superconducting qubits to reduce quasiparticles and charge
noise [14.613106897690752]
We experimentally demonstrate how to control quasiparticle generation by downsizing the qubit.
We shape the electromagnetic environment of the qubit above the superconducting gap, inhibiting quasiparticle poisoning.
Our findings support the hypothesis that quasiparticle generation is dominated by the breaking of Cooper pairs at the junction.
arXiv Detail & Related papers (2022-02-03T06:40:21Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.