論文の概要: Debiasing Machine Learning Models by Using Weakly Supervised Learning
- arxiv url: http://arxiv.org/abs/2402.15477v1
- Date: Fri, 23 Feb 2024 18:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 13:41:00.998238
- Title: Debiasing Machine Learning Models by Using Weakly Supervised Learning
- Title(参考訳): 弱教師付き学習による機械学習モデルの偏差化
- Authors: Renan D. B. Brotto, Jean-Michel Loubes, Laurent Risser, Jean-Pierre
Florens, Kenji Nose-Filho and Jo\~ao M. T. Romano
- Abstract要約: アルゴリズムの出力と感度変数の両方が連続的な設定において、アルゴリズム決定のバイアス軽減の問題に取り組む。
典型的な例は、年齢や財政状況に関して行われる不公平な決定である。
我々のバイアス緩和戦略は弱い教師付き学習手法であり、データのごく一部を公平に測定する必要がある。
- 参考スコア(独自算出の注目度): 3.3298048942057523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle the problem of bias mitigation of algorithmic decisions in a
setting where both the output of the algorithm and the sensitive variable are
continuous. Most of prior work deals with discrete sensitive variables, meaning
that the biases are measured for subgroups of persons defined by a label,
leaving out important algorithmic bias cases, where the sensitive variable is
continuous. Typical examples are unfair decisions made with respect to the age
or the financial status. In our work, we then propose a bias mitigation
strategy for continuous sensitive variables, based on the notion of endogeneity
which comes from the field of econometrics. In addition to solve this new
problem, our bias mitigation strategy is a weakly supervised learning method
which requires that a small portion of the data can be measured in a fair
manner. It is model agnostic, in the sense that it does not make any hypothesis
on the prediction model. It also makes use of a reasonably large amount of
input observations and their corresponding predictions. Only a small fraction
of the true output predictions should be known. This therefore limits the need
for expert interventions. Results obtained on synthetic data show the
effectiveness of our approach for examples as close as possible to real-life
applications in econometrics.
- Abstract(参考訳): アルゴリズムの出力と感度変数の両方が連続的な設定において、アルゴリズム決定のバイアス軽減の問題に取り組む。
事前の作業の多くは、離散的な敏感な変数を扱い、つまり、バイアスはラベルで定義された人のサブグループで測定され、敏感な変数が連続している重要なアルゴリズム的バイアスケースを除外する。
典型的な例は、年齢や財務状況に関する不公平な判断である。
そこで本研究では,計量学の分野から派生した内在性の概念に基づいて,連続感度変数に対するバイアス緩和戦略を提案する。
この新しい問題を解決することに加えて、バイアス緩和戦略は、データのごく一部を公平な方法で測定することを要求する、弱い教師付き学習手法である。
予測モデルについて仮説を立てないという意味では、モデル非依存である。
また、かなりの量の入力観測とそれに対応する予測を用いている。
真の出力予測のごく一部しか知られていない。
したがって、専門的な介入の必要性は制限される。
合成データから得られた結果は,econometricsにおける実生活への適用に可能な限り近づいた例に対して,本手法の有効性を示す。
関連論文リスト
- Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
我々は新しいデータ前処理アルゴリズムOrthogonal to Bias (OB)を提案する。
OBは、連続的な敏感な変数群の影響を排除し、機械学習アプリケーションにおける反ファクトフェアネスを促進するように設計されている。
OBはモデルに依存しないため、幅広い機械学習モデルやタスクに適用できる。
論文 参考訳(メタデータ) (2024-03-26T16:40:08Z) - Distribution-free risk assessment of regression-based machine learning
algorithms [6.507711025292814]
我々は回帰アルゴリズムとモデル予測の周囲に定義された区間内に存在する真のラベルの確率を計算するリスク評価タスクに焦点をあてる。
そこで,本研究では,正のラベルを所定の確率で含むことが保証される予測区間を提供する共形予測手法を用いてリスク評価問題を解決する。
論文 参考訳(メタデータ) (2023-10-05T13:57:24Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
偏見のあるモデルは、社会の特定のグループに不均等に害を与える決定を下すことができる。
多くの作業は静的ML環境での不公平さを測定することに費やされているが、動的でパフォーマンスのよい予測は行っていない。
本稿では,データのバイアスを特徴付ける分類法を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:56:04Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
マスク付きトークンの予測に広く用いられている自己教師型学習手法に着目する。
いくつかの予測タスクは識別可能性をもたらすが、他のタスクはそうではない。
論文 参考訳(メタデータ) (2022-02-18T17:09:32Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。